Impacts of linear disturbance on wetland functions

Impact of linear disturbances on boreal wetland carbon and greenhouse gas exchange

Maria Strack

Acknowledgements

Bin Xu, Greg McDermid, Kisa Mwakanyamale, Martin Brummell, Melanie Bird, Divya Softa, Julie Lovitt, Saraswati, Mustafizur Rahman, Katie Lowey, Mireille Pruneau-Rodrigues, Ana Kostic, Ali Engering

Canada Research Chairs program

Environment and Climate Change Canada EMISSIONS REDUCTION ALBERTA

Environnement et Changement climatique Canada

Linear disturbance in wetlands alters local controls on ecosystem function

- Edge effects: Anna Dabros
- Habitat impacts: Stuart Slattery
- Cumulative effects— in the context of climate change: Hedvig Nenzen

Linear disturbance and C exchange: Access roads

How to build better roads – Bev Gingras

Access roads: impacts on GHG emissions?

How do roads affect peatland GHG exchange and can culverts mitigate induced emissions?

Access roads: impacts on GHG emissions?

Plant community, water table position, hydraulic gradients, hydraulic conductivity CO₂, CH₄ exchange, soil enzyme activity and phenolics, DOC concentration, biomass/NPP

WT position between upstream and downstream areas

 Bog: downstream WT (-18 cm) was significantly (p < 0.05) lower than -4 cm and -13 cm in upstream & natural areas.

Access roads: CO₂ exchange

Saraswati, PhD candidate See poster on enzymatic activity

Access roads: CH₄ exchange

Blockage of water flow and changing plant and soil conditions may also alter dissolved organic carbon pools

-see poster by Michael Wrubleski

Linear disturbance and C exchange: Cutlines

Linear disturbance and C exchange: Cutlines

Cutlines: ecohydrological conditions

	ON ROAD	NORTH (upstream)	SOUTH (downstream)
Soil temperature (5 cm; °C)	17.3 (0.6) a	14.5 (0.7) ab	13.1 (0.5) b
Date of thaw (top 30 cm)	Prior to May 12	May 12 to Jun 10	May 12 to Jun 25
WT (cm)	-4.4 (1) a	-22.6 (2.9) b	-14.1 (1.9) c
Total understory vascular plant cover (%)	55 (5) a	35 (2) b	44 (2) c
Understory moss cover (%)	20 (5) a	60 (4) b	50 (4) b
Understory graminoid cover (%)	53 (3) a	2 (1) b	3 (1) b
Tree biomass (kg/m ²)	0 a	2.3 (0.3) b	0.9 (0.2) b

Strack et al., 2017, Global Change Biology

Summary and Future Research Needs

- Impacts specific to wetlands have not been well-quantified
 - Linear disturbance are distributed across the boreal forest in Canada indicating that impact on peatland function is extensive
- Hydrological changes related to flow blockage and compression alter GHG exchange, with CH₄ flux generally increased by linear disturbance
- More research needed on a range of peatland types, disturbance types (width, aspect, extent of compression) to better estimate regional and cumulative impacts