Linear Feature Restoration in Boreal Wetlands

Bin Xu, PhD NSERC Industrial Research Chair For College, Peatland Restoration Boreal Research Institute Northern Alberta Institute of Technology

- Case Studies
 - Clay pads and OSE wells
 - Airstrip
 - Woodchip road
 - Winter access road
- Challenges and Considerations
 - Different types of wetlands and constraints
 - Well defined, clear, balanced end goals
 - Practical field technologies and HQP training
 - Monitoring and assessment
 - Cost and benefit

Well Pads and Linear Features

Partial Removal/Wetting + Planting → Initiation on Mineral Substrate

Complete Removal/Peat Inversion + Moss Layer Transfer

Wetland Initiation on Mineral Substrate - Airstrip

July 15, 2014

Spring 2015

Sedges as a vegetation management tool to control weed invasion
Microsite and woody establishment
Willow cuttings vs. seedlings
Natural Regeneration

2015/Early 2016

Timing
Material Constraint
Clear Goal
Risk Management
Time

Peat Inversion – Woodchip Winter Road

- What to do with the woodchips?
 - Dig and move?
- Connectivity, topography/hydrology
 - Buried pipeline
 - Road surface at level
- Treed fen
- Natural ingress vs. planting/transplanting

30/11/2017

Details at www.NAIT.CA/borealresearch

10

See Melanie Bird's poster

A1

Future Research

See Kimberly Murray's poster for detail

Winter Access Roads – Mounding and Planting

- Surface compaction → lack of trees (and mosses); dominance of sedges
- Corridors for predators
- Hotspots of GHG (Strack et al. 2017)

NA]

Future Research

Challenges and Considerations

- Field methods and techniques
 - Partial vs. complete removal
 - Peat inversion (burial of material?)
 - Revegetation through planting, donor transfer, natural ingress
- Monitoring and Assessment
 - Short-term goal to achieve certification
 - Long-term restoration of functions and overall resilience
 - Innovative tools to assess hydrology, vegetation, and ecosystem services

Challenges and Considerations

- Understanding of the ecosystems and constraints
 - Bog, fen, marsh
 - hydrology and vegetation
 - All season vs. temporary access; winter vs. seismic lines
 - Timeline, costs, material,
 - Regulatory requirements
- Clearly defined restoration goals
 - landscape re-integration, GHG mitigation, tree growth, habitat for wildlife
 - Short-term vs. long-term
 - Risk management
 - Various stakeholders needs

- Improve efficiency and overall success while keeping cost reasonable
 - What is the overall cost?
 - site preparation + revegetation + monitoring/management + certification?
 - What are the benefits? ightarrow

Cost/time/Investment

- Integrated management and regional/landscape scale decision making
 - Better planning and construction?
 - Interim reclamation
 - Critical, high value wetlands

How do we cope and live in a familiar but different and dynamic landscape under future climatic uncertainties?