

Optimizing Weed Control for Progressive Reclamation: Risk Analysis on Regulated Weeds in the Boreal Region

Amanda Schoonmaker and Stefan Schreiber NAIT Center for Boreal Research

Chris Powter Enviro Q&A Services

Bonnie Drozdowski InnoTech Alberta

PREPARED FOR CANADA'S OIL SANDS INNOVATION ALLIANCE

November 30, 2018

DISCLAIMER

This report was prepared as an accounting of work conducted by InnoTech Alberta. Every possible effort was made to ensure that the work conforms to accepted scientific practice. However, neither InnoTech Alberta, nor any of its employees, make any warranty, expressed or implied, or assumes any legal liability or responsibility for accuracy, completeness, or usefulness of any of the information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Moreover, the methods described in this publication do not necessarily reflect the views or opinions of the individual scientists participating in methodological development or review.

InnoTech Alberta assumes no liability in connection with the information products or services made available. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favouring by InnoTech Alberta. All information, products and services are subject to change by InnoTech Alberta without notice.

CITATION

This report may be cited as:

A. Schoonmaker, S. Schreiber, C.B. Powter, and B. Drozdowski. 2018. Optimizing Weed Control for Progressive Reclamation: Retrospective Case Study and Risk Framework. InnoTech Alberta, Edmonton, Alberta. 68 pp.

EXECUTIVE SUMMARY

The overall goal of this project was to attempt to assess whether noxious weeds managed in the boreal forest are significantly impacting boreal succession using publicly available literature, available vegetation survey data and field experience of oil sands operations practitioners. Current regulations require operators to control or eradicate noxious or prohibited noxious weeds, respectively. Presently, this is accomplished through the use of herbicides and manual labour (e.g., hand-pulling). This project aimed to demonstrate whether, under certain site conditions, there is a third potential alternative – utilizing successional processes and forest vegetation development to better address some of the issues raised above.

Project objectives were:

- 1. To compile current information on weed status and management programs in the boreal ecosystem, for both mining and in-situ oil sands operations.
- 2. To determine the risk factors of the regulated weeds that have been observed in the boreal ecosystem, with this objective being addressed by:
 - a. Developing fact sheets summarizing key characteristics that have historically made these species problematic: their known distribution in Alberta and tolerance, known impacts to environment, and current management options.
 - b. Completing a retrospective case study on available data sets where vegetation monitoring had occurred for at least three years to examine whether noxious weeds appeared to influence the development of woody vegetation and if these species were persistent over time.
 - c. Developing a risk analysis framework based on the results from the literature review and retrospective case study and with consideration of a risk analysis tool
 that was developed by Alberta Agriculture and Forestry (Alberta Agriculture and Forestry, nd).
- 3. To determine whether the current approach to weed management (i.e., active control and eradication) of these regulated weed species is necessary in boreal reclaimed sites or if other methods could be used (i.e. monitoring).
- 4. To identify whether there is enough evidence to reduce the number of weeds requiring active management in the boreal ecosystem.

A literature review was previously submitted under separate cover (Small et al. 2018). This report summarizes the results of a retrospective case study of oil sands data and development of a risk analysis framework.

A retrospective case study was conducted to quantitatively examine patterns in forest vegetation and non-native development using six oil sands data sets provided by the industry participants and existing research data managed by the authors and included data sets where vegetation monitoring had occurred for at least three years. Correlation analyses completed across the six reclamation sites did not find strong evidence of a negative association between woody cover and noxious weeds (by group or by species); this was measured across multiple years of measurement. The only significant correlations between these parameters were in fact positive associations. This analysis was supported by changes in relative dominance favoring woody vegetation as individual sites aged. However, the relative dominance of noxious weeds varied over time and there was no consistent trend amongst the sites. Though these results

collectively suggest that active noxious weed management may not be required as the species evaluated did not appear to hinder woody vegetation development, the analyses conducted in this report were not causal. Future studies are still needed to: (i) confirm that noxious species are not overtly competitive with woody vegetation recovery (or to identify specific thresholds that woody vegetation are able to tolerate) and (ii) to examine longer term site recovery to confirm that noxious species do consistently fall out of these sites.

A risk analysis framework was developed based on the results from the retrospective case study and with consideration of a currently available risk analysis tool (RAT) that was developed by Alberta Agriculture and Forestry. The risk analysis tool was not useful for determining effects thresholds though it has utility for its core purpose (which is to effectively triage and prioritize invasive species in terms of management considerations). The authors developed a conceptual risk analysis framework (RecRAT) using RAT as a starting point but using a more quantitative approach to evaluation. The proposed RecRAT is a two-part evaluation that first requires the user to provide data on relative dominance by vegetation category, site age, tree and shrub height, as well as management risk. It would then calculate an exposure risk (risk of site not becoming a forest) showing thresholds in relative dominance between vegetation cover types and stand age. The second part of the evaluation would include a short questionnaire that rated aspects of environmental risk to come up with a single number score. The exposure and environmental risk could then be plotted and conceptually the combined value would be expressed in the standard way risk-analysis are shown (green, yellow or red). Considerable research is required to support both components of RecRAT.

TABLE OF CONTENTS

DISCL	AIME	R		i
CITAT	ION			i
EXECU	JTIVE	SUMM	IARY	ii
TABLE	E OF C	ONTE	NTS	iv
LIST O	F TER	MS AN	ID ACRONYMS	v
1.0	INTR	ODUC	TION	1
	1.1	Projec	CT BACKGROUND AND OBJECTIVES	1
2.0	RETR	OSPEC	TIVE CASE STUDY	3
	2.1 2.2	METHO RESUL ⁷ 2.2.1 2.2.2	DDOLOGY TS AND DISCUSSION Correlation Analysis Patterns of Relative Dominance	3 4 4 5
3.0	DEVE	ELOPM	ENT OF A RISK ANALYSIS FRAMEWORK	6
	3.1 Fores 3.2	Testin Stry) Devel	IG THE PROVINCIAL RISK ASSESSMENT TOOL (ALBERTA AGRICULT 6 OPING A RECLAMATION-FOCUSED RISK ASSESSMENT TOOL	TURE AND
4.0	SUM	MARY	OF KEY FINDINGS	9
	4.14.2	LITERA 4.1.1 4.1.2 4.1.3 4.1.4 RISK A 4.2.1 4.2.2	ATURE REVIEW Regulatory Framework Public Records of Weed Occurrence Nature of Weed Growth in Forest Ecosystems Weed Monitoring and Management at In Situ and Mineable Oil Sands NALYSIS Retrospective Case Study Development of a Risk Analysis Framework.	9 9 9 9 10 10 10 10 10
5.0	Know	vledge (Gaps and Relevant Research Questions	11
6.0	REFE	RENCE	ES	14
APPEN	NDIX A	A: TAB	LES	16
APPEN	NDIX I	3: FIGU	RES	
APPEN	NDIX (C: PEAI	RSON CORRELATIONS	
APPEN	NDIX I	D: MAS	TER SPECIES TABLE	

LIST OF TERMS AND ACRONYMS

Terms

Control

To inhibit the growth or spread, or to destroy noxious weeds.

Destroy (Eradicate)

A regulatory term from the *Weed Control Regulation* meaning to kill all growing parts of prohibited noxious weeds, or to render reproductive mechanisms non-viable.

NOTE: the plain language term "eradicate" is often used in place of "destroy" in the literature and so will be used in this report.

In-situ Developments

The combination of the central processing facility (the Enhanced Recovery In-situ Oil Sands or Heavy Oil Processing Plant in EPEA regulatory terms) and the field production facilities (the Oil Production Site in EPEA regulatory terms).

Noxious Weed

A plant designated in accordance with the *Weed Control Regulation* as a noxious weed and includes the plant's seeds.

Nuisance Weed

A weed class from the 2001 Weed Regulation that is no longer regulated.

Oil Sands Operations

For the purpose of this report, oil sands mines and in-situ developments.

Pesticide

As defined in the Environmental Protection and Enhancement Act (EPEA), it includes a herbicide:

(i) a substance that is intended, sold or represented for use in preventing, destroying, repelling or mitigating any insect, nematode, rodent, predatory animal, parasite, bacteria, fungus, weed or other form of plant or animal life or virus, except a virus, parasite, bacteria or fungus in living people or animals,

(ii) any substance that is a pest control product within the meaning of the *Pest Control Products Act* (Canada) or is intended for use as such a pest control product,

(iii) any substance that is a plant growth regulator, a defoliant or a plant desiccant,

(iv) a fertilizer within the meaning of the *Fertilizers Act* (Canada) that contains a substance referred to in subclause (i), (ii) or (iii), and

(v) any other substance designated as a pesticide in the regulations.

Prohibited Noxious Weed

A plant designated in accordance with the *Weed Control Regulation* as a prohibited noxious weed and includes the plants' seeds.

Restricted Weed

A weed class from the 2001 Weed Regulation, equivalent to Prohibited Noxious.

Undesirable Plants

Plants that are incompatible with the ecosite and may impede land manager operability and/or management or the functioning of the native plant community (according to the 2010 Wellsite Criteria for Forested Land). This may or may not be a native species or a weed species listed in the *Weed Control Regulation*.

Weed

Vegetation defined as noxious or prohibited noxious by the Weed Control Act, as amended.

Weed Management

For the purposes of this report, all steps taken to prevent, control or destroy weeds.

Acronyms

The following acronyms are used in this report or the cited references.

AAF	Alberta Agriculture and Forestry
AER	Alberta Energy Regulator
Al-Pac	Alberta-Pacific Industries Inc.
AWRAC	Alberta Weed Regulatory Advisory Committee
COSIA	Canada's Oil Sands Innovation Alliance
EPEA	Environmental Protection and Enhancement Act
FMA	Forest Management Agreement
GIS	Geographic Information System
IAPP	Invasive Alien Plant Program
LFH	Litter, Fibric, Humic
OSE	Oil Sands Exploration
PLA	Public Lands Act

1.0 INTRODUCTION

1.1 PROJECT BACKGROUND AND OBJECTIVES

Undesirable plant species in forested lands are those that spread rapidly and either slow or hinder the establishment of target desirable vegetation through competitive exclusion (Thompson and Pitt, 2011). In mining and in-situ oil sands operations, the greater the disturbance and traffic on industrial production facilities and roads, the higher the likelihood that undesirable species spread and become established. Weed species are a provincially regulated subset of undesirable plant species.

In Alberta, there are 75 regulated weed species (46 prohibited noxious and 29 noxious) listed in the *Weed Control Regulation* (Government of Alberta, 2010) under the *Weed Control Act* (Government of Alberta, 2008) that need to be destroyed or controlled, respectively, as undesirable species. The concern with having weeds establish is the expectation that they will (1) out-compete and displace local native grasses, forbs, shrub and tree seedlings; (2) alter natural habitats and reduce local biological diversity; (3) hybridize with native species; and (4) change local nutrient cycling, water chemistry and hydrological regimes. Alberta Environment and Sustainable Resource Development (2012) describes the concern with weeds on industrial developments as:

- Fire hazards in non-vegetated areas;
- Competition with desirable plant species;
- Economic challenges of controlling the weeds both onsite and offsite; and,
- Non-compliant with the Weed Control Act.

Some of these concerns are more pertinent for the White Area and may be less of a risk for the Green Area, although there is currently no comprehensive documentation to support or refute this observation. However, the general nature of the regulated weed species is that they are fast-growing, often highly competitive species, and have the ability to spread rapidly (as shown in agricultural systems).

Observations from years of field work on disturbed and reclaimed forested sites has indicated that, at least some of the weeds currently regulated by the *Weed Control Act* may pose less risk to native plant establishment, succession and ultimately reclamation success in a boreal ecosystem.

"Natural habitats in the boreal zone have a high degree of resistance to invasion [of non-native species] compared with those of other Canadian zones, likely owing to harsh climates, low light levels, poor soil nutrient availability, low soil pH, low productivity, and dense covering of the ground by plants, especially bryophytes" (Langor et al., 2014).

The issues with continuing to manage regulated weeds, which are interpreted to be of low risk, while aiming to achieve reclamation closure include the following:

- Increased time and resources spent on weed management;
- Increased herbicide application into the environment;
- Unintentional mortality of desirable native species from accidental herbicide overspray; and,
- A delay in reclamation certification application by at least one growing season (Government of Alberta, 2013).

• "The primary environmental concern [related to herbicide application in forested areas] is with the alteration of vegetation composition, structure and successional patterns that are known to be important for the provision of habitat and the maintenance of biodiversity in general" (Alberta Sustainable Resource Development, 2004).

The overall project goal was to assess whether noxious weeds managed in the boreal forest are significantly impacting boreal succession using publicly available literature, available vegetation survey data and field experience of oil sands operations practitioners. The assessment was based on risk factors of individual weed species, growth dynamics with native vegetation, and site conditions. Current regulations require operators to control or eradicate noxious or prohibited noxious weeds, respectively. Presently, this is accomplished through the use of herbicides and manual labour (e.g., hand-pulling). This project aimed to demonstrate whether, under certain site conditions, there is a third potential alternative – utilizing successional processes and forest vegetation development to better address some of the issues raised above.

Project objectives were:

- 1. To compile current information on weed status and management programs in the boreal ecosystem, for both mining and in-situ oil sands operations.
- 2. To determine the risk factors of the regulated weeds that have been observed in the boreal ecosystem, with this objective being addressed by:
 - a. Developing fact sheets summarizing key characteristics that have historically made these species problematic: their known distribution in Alberta and tolerance, known impacts to environment, and current management options.
 - b. Completing a retrospective case study on available data sets where vegetation monitoring had occurred for at least three years to examine whether noxious weeds appeared to influence the development of woody vegetation and if these species were persistent over time.
 - c. Developing a risk analysis framework based on the results from the literature review and retrospective case study and with consideration of a risk analysis tool that was developed by Alberta Agriculture and Forestry (Alberta Agriculture and Forestry, nd).
- 3. To determine whether the current approach to weed management (i.e., active control and eradication) of these regulated weed species is necessary in boreal reclaimed sites or if other methods could be used (i.e. monitoring).
- 4. To identify whether there is enough evidence to reduce the number of weeds requiring active management in the boreal ecosystem.

To achieve these objectives this study was separated into two key tasks: 1) a literature review to compile the current information on weed status and management programs in the boreal ecosystem, for both mining and in-situ oil sands operations; and 2) a risk analysis on regulated weeds in the boreal region of Alberta. A comprehensive literature review was completed by Small et al. (2018), the findings of which were used to inform the knowledge gaps and recommendations herein. The remaining objectives were the focus of this report.

2.0 RETROSPECTIVE CASE STUDY

The retrospective case study provided an opportunity to quantitatively examine patterns in forest vegetation and non-native plant (emphasizing noxious weed) development. The case study was completed utilizing six independent data sets: (i) CNRL Airstrip, (ii) ConocoPhillips / Nexen 2004 construction, (iii) ConocoPhillips Stockpile, (iv) CNRL Remote Sump, (v) CNRL Delineation Wells and (vi) Suncor Base Mine. These data sets were provided by the industry participants and existing research data managed by the authors and included data sets where vegetation monitoring had occurred for at least three years (**Tables A1-A2**).

Vegetation development patterns were examined by grouping individual species cover estimates into one of the following classes: woody, native forbs, non-native forbs, grasses or noxious weeds (**Table A3**). Individual noxious weed species were also analyzed individually to provide a closer examination of vegetation development patterns; as a second point of reference to understand non-native plant behavior, two additional groups (sweet clovers and perennial clovers) were also included as these agronomic species were prevalent through most of the case study data sets (**Table S3**).

2.1 METHODOLOGY

This analysis comprised measurements from six reclamation sites with multiple years of vegetation cover data collected after reclamation activities were completed (**Table A1**). The data were collected independently from each other, i.e., not part of the same study. Some data sets contained experimental treatments and measured vegetation cover response over time. Other data sets monitored vegetation cover over time with no additional treatments. For this analysis, all data sets were aggregated to the circular plot level (in the case where multiple quadrat-based measurements were taken in each circular plot to assess vegetation cover) and then either grouped by year after reclamation or by reclamation site (depending on the analysis) (**Table A2**).

All analyses, graphics and data manipulations were carried out using the R Language for Statistical Computing and the *`tidyverse*' package (R Core Team, 2018; Wickham, 2017). To assess the relationship between woody cover and cover types as well as individual noxious weeds and non-native undesirable species (**Table A3**), Pearson correlation coefficients were calculated, excluding zero percent cover values, using the *`cor.test()*' function in R (**Tables A4**, **A5**; for graphical representations see **Appendix C**). For this analysis, the data was examined for each reclamation site and the number of years since reclamation. To provide a more generalized summary of correlation trends across sites, the direction and significance of the correlation coefficients (positively or negatively different from zero) were plotted and the mean 'correlation' was graphically displayed (**Figure B1**).

The probability of presence was calculated using binomial regressions via the `glm()` function. Estimated marginal means for the probability estimates, as well as the 95% confidence limits, were calculated using the `emmeans()` function in the `emmeans` package (Lenth, 2018). The dependent variables were three (of five) noxious weeds (perennial sow thistle, scentless chamomile and Canada thistle) as well as two non-native undesirable species (sweet clover and perennial clovers (which represented species from the genus *Trifolium*)) and the independent variables were the six reclamation sites (**Table A1**). There was insufficient presence (too many zeros) to determine probabilities of presence for common tansy and tall buttercup. For this analysis, the data was presented by reclamation site (**Figure B2**).

Relative dominance was assessed at all reclamation sites over time. It was calculated as percent cover of vegetation cover types (see **Table A3** for definitions) as well as noxious weeds and undesirable species (**Table 3**) divided by the total cover in the measurement quadrat (at the plot level). Then the data was grouped by reclamation site and graphically displayed (**Figures B3 to B8**).

2.2 RESULTS AND DISCUSSION

A total of five noxious weed species were observed in at least one of the six study data sets evaluated, though all five species were never observed together on a single site (Figure B1, Tables A4-A5). Of these five species, only three (perennial sow thistle, Canada thistle and scentless chamomile) were observed at levels that allowed for statistical evaluations as common tansy and tall buttercup were rarely present (see for example, Figure C15 and C45). Perennial sow thistle was the most common to the study data sets (observed on 4 out of 6 data sets at > 10% occurrence, Figure B2). Suncor Base Mine had a notable mean occurrence exceeding 80% (Figure B2). Scentless chamomile was less commonly observed across the data sets though it occurred on average 50% of the time at the ConocoPhillips Stockpile (Figure B2). In addition, two other groups of non-native plants were included: sweet clovers and perennial clovers (Table A3) and these groups were present on all of the study sites (Figure B2). Although sweet clovers and perennial clovers and perennial clovers are not considered noxious species, they are non-native and often prevalent on young reclamation sites thus may influence the development of native vegetation cover and provide another point of reference to understand vegetation competition dynamics in these sites.

2.2.1 Correlation Analysis

Correlation analysis was conducted between woody vegetation and each of the species noted above as well as four types of herbaceous vegetation cover (grasses, native forbs, non-native forbs and noxious weeds). The noxious weeds (whether grouped or examined individually) and woody vegetation showed no significant negative correlations (though some non-significant correlations were detectable) across the sites and years of measurements (**Tables A4-A5, Figure B1**). The only significant relationships observed between noxious weeds (whether grouped or examined individually) and woody cover were actually positive associations (**Tables A4-A5**) and these correlations were sporadic across sites and years of measurement. However, perennial clovers and sweet clovers were more often negatively correlated with woody cover (though it was only significant in year 2 at ConocoPhillips Stockpile) (**Table A5, Figure B1**). Although correlations cannot prove causal effects, these results do point towards a conclusion that, at least for the noxious species under study, there was limited evidence that their presence was inhibiting woody vegetation development.

Woody vegetation and native forbs were typically positively correlated, exclusively (and significantly) so in the first 2 years post reclamation (**Table A4, Figure B1**). In contrast, woody vegetation and non-native forb cover varied over time for most of the sites studied but in general the correlation was positive in the first year, trended towards becoming negative in years 2-3 and was then highly variable across sites thereafter (**Table A4, Figure B1**). The correlation between woody vegetation and grass cover showed a similar pattern to that of woody vegetation and non-native forbs (**Table A4, Figure B1**). In the ConocoPhillips / Nexen 2004 construction data set, the negative correlation between grasses and woody cover increased over time, presumably in the longer time frame this was being driven by increasing woody canopy cover shading the grasses (rather than the grasses outcompeting the woody vegetation) (**Table A4, Figure B1**).

2.2.2 Patterns of Relative Dominance

Relative dominance varied for most vegetation groups as well as for the individual species evaluated; however, what stood out was that the relative dominance of woody vegetation consistently increased with time for every data set evaluated (**Table A6**, **Figures B3-B8**). This aligns with the often-stated assumption that eventually native forest trees and shrubs will overtop competing vegetation. Native and non-native forb groups tended to decline or were observed as variable patterns amongst the sites (**Table A6**, **Figures B3-B8**). Relative dominance of grasses increased in half of the data sets (CNRL Airstrip, CNRL Delineation Wells and Suncor Base Mine), varied with no consistent trend in two (ConocoPhillips Stockpile and CNRL Remote Sump) and declined in the Conoco / Nexen 2004 construction (**Table A6**, **Figure B3-B8**). It is notable that for all the sites where grass dominance increased with time there was a concurrent decline in relative dominance of non-native forbs but not necessarily noxious weeds (as a group) (**Table A6**). This may be due in part to the greater initial dominance (and absolute cover) in the non-native forbs therefore changes in vegetation over time would have been easier to detect. In addition, the overwhelming presence of sweet clover and perennial clovers in the non-native vegetation group and these species are often eventually outcompeted by grasses, a fact that was consistently observed in all data sets with exception of Suncor Base Mine which did not vary (**Table A6**).

The relative dominance of noxious species (as a group) was variable amongst sites with two sites showing an increasing trend (CNRL Airstrip and ConocoPhillips Stockpile), two sites showing a declining trend (CNRL Remote Sump and CNRL Delineation Wells) and two sites showing no consistent pattern or change (Conoco / Nexen 2004 construction and Suncor Base Mine) (**Table A6, Figures B3-B8**). It is important to note that the relative dominance (and absolute cover) of this vegetation group was typically the lowest of all vegetation cover groups (with the exception of Suncor Base Mine (**Figure B8a**) and peak relative dominance values ranged from <1% for the Conoco / Nexen 2004 construction (**Figure B4a**) to 13% (peak in year 3 where year 5 showed relative decline) at the Suncor Base Mine (**Figure B8a**). Suncor Base Mine was the only data set from the mineable oil sands and this may have made some of the vegetation patterns somewhat unique. The CNRL Remote Sump data set visually shares the most similarity in terms of relative dominance patterns to Suncor Base Mine which may be partially explained by the site history¹. The sites where increased relative dominance of the noxious species group was observed over time were associated with increased dominance in perennial sow thistle (CNRL Airstrip and ConocoPhillips Stockpile, **Figure 3a, 5a**) and in Canada thistle (CNRL Airstrip only, **Figure B8b**).

¹ The site had been reclaimed and seeded to native grasses, allowed to grow for 2 years and was then deep ripped with a McNabb RipPlow and immediately planted with a mixture of native trees and shrubs. This site prep activity resulted in substantially knocking back the grass community (for at least 2 years) and therefore, it may have to some degree regenerated in an atypical way (as the initial flush of agronomic seed that seems to be nearly universally present in these sites (and for which perennial clovers tend to show the greatest relative dominance on all of the other sites aside from these two) likely germinated following the initial reclamation work.

3.0 DEVELOPMENT OF A RISK ANALYSIS FRAMEWORK

The risk analysis framework was developed based on the results from the retrospective case study and with consideration of a risk analysis tool (RAT) that was developed by Alberta Agriculture and Forestry (AAF; Alberta Agriculture and Forestry, nd). This section is divided into two components, the first is an evaluation of the AAF tool for conducting risk assessments of alien species and the second section is focused on the development of a reclamation-reforestation specific tool that could be applied in the Boreal region of Alberta.

3.1 TESTING THE PROVINCIAL RISK ASSESSMENT TOOL (ALBERTA AGRICULTURE AND FORESTRY)

The AAF Risk Assessment Tool (RAT) scores the potential exposure and effects (environmental, economic and social) of a species. This tool is meant to be used as a guide to prioritize the management of invasive species (including other biota, not just plants). The primary drivers for the tool are questions related to potential exposure and the potential effects. The exposure potential is weighted the highest while the effects (combined) are weighted together.

Using the ConocoPhillips Stockpile site as an example, the three noxious species observed on this site (perennial sow thistle, Canada thistle and scentless chamomile) were scored with this tool. The inputted answers to the 57 question online survey are shown in **Table A7** and the graphical output of the effect vs exposure graph is presented in **Figure B9**. The maximum score that can be achieved is a 3 for effect and 4 for exposure. The scores for each species were similar (all had the same effect = 0.8) with small variation in exposure (**Figure B9**). A major limitation is that it is difficult to interpret this tool outside of its primary purpose for relative ranking of risk as there is no indication of what thresholds should be in place to trigger a management response. What this tool effectively suggests is that, at least for this site, management efforts could focus on reducing Canada thistle ahead of sow thistle or scentless chamomile. However, because there is little emphasis on the actual quantity / presence of individual species, this tool does not capture the site reality which is that the Canada thistle is sporadically distributed (at low coverage) across the site while both sow thistle and scentless chamomile are more widespread, a fact that is well illustrated by difference in presence at this site (**Figure B2**).

3.2 DEVELOPING A RECLAMATION-FOCUSED RISK ASSESSMENT TOOL

Given the limitations noted above in utilizing the risk analysis tool (RAT) to determine threshold risk levels in noxious weeds, we developed a modified list of questions (hereafter called modified reclamation RAT or RecRAT) to consider when assessing risk that was more tailored to forest reclamation outcomes. This section describes a conceptual framework for a quantitative rating tool that could be developed in collaboration with the Government of Alberta to eventually be used as a true risk or hazard assessment for existing noxious weeds (species that are already regionally present as 'newly' introduced species are likely to require specialized management interventions and they will not have been validated in the RecRAT) in the Boreal region of Alberta.

When developing the RecRAT framework we worked with the assumption that the primary goal of reclamation efforts in the Boreal region is to return the disturbed site to a young forest. The RecRAT is proposed to have two components, a quantitative assessment to identify the degree of exposure risk and a qualitative assessment to understand the environmental risks. The results of the retrospective case study showed that using relative dominance appeared to be a reasonably robust approach to understanding changes in vegetation composition in young reclaimed sites. Relative dominance metrics

formed a key component of the questions posed below in the exposure risk section. Site age and height of woody vegetation was also considered. RecRAT also examines the counter-risk of active management (which would likely be hand-pulling or spraying weeds) in an effort to better understand the wholistic effect of the practice (thereby asking the question: is managing for this single noxious species worth the risk of not achieving the primary objective?).

For the exposure risk, the six RecRAT questions are:

#	Question
1	What is the post-reclamation age of the site?
2	What is the relative dominance of the species in the assessment area?
3	What is the relative dominance of all other herbaceous species in the assessment area?
4	What is the relative dominance of the woody species in the assessment area?
5	What is the average height of individual woody species in the assessment area?
6	What is the counter-risk (i.e., reduction in the relative abundance of target tree / shrub species) of
	engaging in active management of the species in question?

The exposure risk questions would require inputting data values, which would be tabulated to determine if the specific species is posing undue risk to forest development. To effectively evaluate the responses, this assessment would need to have pre-determined thresholds that account for 'normal' vegetation development patterns over time. The following lists the type of information that would have to be known over a general range of environmental conditions:

- The assessment would recognize that noxious species may be present, but that there were known relationships to support that given the age of the site, the current levels of relative dominance would not pose a serious risk to development of forest vegetation and that the noxious species are expected to dissipate over time (due to competition). This assessment would recognize 'normal' or 'expected' patterns of woody vegetation development (and increasing dominance) where at any given age, a relative dominance value for woody vegetation would have an appropriate range of values.
- 2. Previous modelling efforts to predict tree growth (Welham 2010, Welham and Seely 2011, 2013) could be utilized to feed information into the exposure calculation to further support the assertion that forest canopy development was on track. This information would need to be species specific.
- 3. A quantitative understanding of the level of mortality or reduction in different groups of vegetation (particularly woody vegetation) expected by different types of active vegetation management (question 6).

The answers to question 1-6 would then be worked into a probability (0-1 scale with low < 0.3, moderate \geq 0.3 to 0.7 and high > 0.7) of the site not developing into a forest.

For the environmental risk evaluation, the six RecRAT questions are:

#	Question	Weighting	Max score
1	Is the species a host or vector for known diseases, parasites, or pests that will cause harm to stable or abundant native species?	0.5	1.5
2	Is the species a host or vector for known diseases, parasites, or pests that will cause harm to vulnerable or "at risk" species?	0.5	1.5
3	Is the species able to hybridize with stable or abundant native species?	1.5	4.5
4	Is the species able to hybridize with vulnerable or "at risk" species?	1.5	4.5
5	What is the potential level of effect on abiotic or ecosystem processes?	2.0	6.0
6	Is there an environmental concern to actively managing the species?	2.0	6.0

For each of the questions above, the range of responses could include: no effect (score = 0), low effect (score = 1), moderate effect (score = 2), severe effect (score = 3) or unknown (score = 2). Combining each of these components, a graphical view of this approach is shown below:

The specific thresholds (shown by differing colors) would also have to be identified based on more detailed assessment of the trade-off between environmental risk and exposure risk. In the absence of obtaining an outright waiver or permission to simply not actively manage noxious species, the RecRAT concept described above could provide an alternative option (which of course would require government and stakeholder approval). The strength of the RecRAT is that it would be an evidence-based assessment tool (rather than a qualitative opinion based on practitioner experience) to rationalize the need for noxious weed management.

4.0 SUMMARY OF KEY FINDINGS

4.1 LITERATURE REVIEW

Refer to Small et al. (2018) for more information; this section presents the key findings.

4.1.1 Regulatory Framework

Regulatory requirements and policy guidance for the construction, operation, reclamation and certification of oil sands operations defer to the *Weed Control Act* and *Weed Control Regulation* for management of weeds. Given the legislated requirement to destroy prohibited noxious weeds there is likely no option to reduce management requirements for these species. For those noxious weed species that are determined to be of low risk to the development of a reclaimed self-sustaining forest ecosystem (e.g., perennial sow thistle and scentless chamomile), industry or any large organization can request that the *Weed Control Regulation* be re-opened for review. Once opened, recommendations can be made for a change in the regulated status of individual species in a specified region.

4.1.2 Public Records of Weed Occurrence

Few reports were found on the abundance and distribution of weed species within the boreal forest regions of Alberta, Saskatchewan and British Columbia. The weed survey data in the Boreal Transition Ecoregions may provide some indication of current or future risk of invasions into the Athabasca oil sands mining and in-situ areas. More specifically, there are a number of noxious and nuisance weeds reported in the Alberta Boreal Transition Ecoregion including Canada thistle, perennial sow thistle, scentless chamomile, oxeye daisy, common tansy, spreading dogbane (though it is notable this is actually a native and likely desirable species in Boreal forest), cleavers, and tall buttercup. In terms of weed cover, it is likely that the presence and cover of nuisance weeds is greater than that of noxious weeds, depending on the area.

4.1.3 Nature of Weed Growth in Forest Ecosystems

It is important to distinguish between (1) the intensity of competition, and (2) the importance of competition. A strategic vegetation management plan should assess the influence of a noxious weed on a native population, and then aim to suppress the influence only to the extent that it significantly interferes with the growth and development of the desired native plant. This requires a thorough understanding of the relative competitiveness between noxious weeds and native vegetation, how the interactions change over time, and how the ultimate species composition aligns with end land use goals. If the size of the infestation is small in height and extent, it is unlikely that the weeds will have a competitive advantage over the growing trees, inhibiting tree growth and development. Alternatively, if the weeds occupy the majority of the soil surface and extend well above the height of the trees, it is likely that the weeds will have a competitive advantage over available nutrients, water and light. This could negatively impact tree growth and development.

4.1.4 Weed Monitoring and Management at In Situ and Mineable Oil Sands

Noxious weeds are more prevalent within in situ and mineable oil sands sites than prohibited noxious weeds. The top four noxious weeds managed for in oil sands operations are perennial sow thistle, scentless chamomile, Canada thistle and common tansy. It is believed that these species are predominantly transported to sites via equipment and machinery.

The age of a reclaimed area determines the general risk of forest succession inhibition; juvenile native vegetation can be outcompeted for light causing delays in growth. However, once the trees grow above the height of weed infestation, many noxious weed species begin to die-off due to shade intolerance (with the exception of Canada thistle). Those noxious weed species observed to be of low risk to a developing forest community include perennial sow thistle and scentless chamomile as they are not aggressive, tend to be localized, and begin to disappear from the community once other vegetation becomes established.

4.2 RISK ANALYSIS

4.2.1 Retrospective Case Study

Correlation analyses completed across the six reclamation sites did not find strong evidence of a negative association between woody cover and noxious weeds (whether examined as a group or by species); this was measured across multiple years of measurement. The only significant correlations between these parameters were in fact positive associations (**Tables A4-A5, Figure B1**). This analysis was further supported by changes in relative dominance favoring woody vegetation as individual sites aged while the relative dominance of noxious weeds was site specific and increased, decreased or showed no consistent trend or change over time. The variable pattern was likely driven by the particular mixture and absolute coverages of the vegetation community in that site. It is noteworthy that even with relatively high noxious weed occurrence (>50%, though not necessarily coverage) for two of the data sets examined (ConocoPhillips Stockpile and Suncor Base Mine), woody vegetation development progressed steadily.

If perennial clovers could be considered generally representative of the non-native plant group (inclusive of noxious species), the results of this study showed a very clear pattern of declining relative dominance over time (on 5 of 6 data sets measured). This pattern may be more apparent relative to other non-native species as this species grouping was often commonly occurring (higher coverage), thereby making the shifts in vegetation easier to detect. Nevertheless, as none of the analyses conducted in this report are causal, future studies are still required to: (i) confirm that noxious species are not overtly competitive with woody vegetation recovery (or to identify specific thresholds that woody vegetation are able to tolerate) and (ii) to examine longer term site recovery to confirm that noxious species do consistently fall out of these sites as the data sets in the current investigation were often 5 years or less in age (ConocoPhillips / Nexen 2004 construction had 10 years of measurement but it never did have a sizeable population of noxious species).

4.2.2 Development of a Risk Analysis Framework

The original AAF RAT (risk analysis tool) was not useful for determining effects thresholds though it has utility for its core purpose (which is to effectively triage and prioritize invasive species in terms of management considerations). The authors developed a conceptual risk analysis framework (RecRAT) using RAT as a starting point but employing an evidence-driven approach to evaluation. The proposed RecRAT is a two-part evaluation that first requires the user to provide data on relative dominance by vegetation category, site age, tree and shrub height, as well as management risk. It would then calculate

an exposure risk (risk of site not becoming a forest) based on previously known data sets (which do not currently exist) showing thresholds in relative dominance between vegetation cover types and stand age. The second part of the evaluation would include a short questionnaire (a preliminary list of questions were developed) that rated aspects of environmental risk to come up with a single number score. The exposure and environmental risk could then be plotted and conceptually the combined value would be expressed in the standard way risk-analyses are shown (green, yellow or red).

5.0 KNOWLEDGE GAPS AND RELEVANT RESEARCH QUESTIONS

The table below summarizes key knowledge gaps as well as suggestions for further work to fill these gaps. The term "noxious weeds" in the table refers to the main weeds found on in situ and mine sites, and in particular on the two species (perennial sow thistle and scentless chamomile) that were determined to be of low risk to the development of a reclaimed self-sustaining forest ecosystem and therefore for potential exemptions from the *Weed Control Regulation*. There was strong evidence that Canada thistle was problematic for woody cover development but some anecdotal descriptions suggested this species may be more persistent, even with canopy cover development.

Gap #	Section	Knowledge Gap	Suggestions for Further Work		
1	Literature	Quantitative evidence detailing the level of	Review data from CEMA's long		
	review and	long-term persistence of noxious weeds. It is	term monitoring plots to compare		
	Retrospective	anticipated that they will be outcompeted	"weeds" and tree/shrub data.		
	case study	(due to successional theory) but local data is			
		lacking.	There are 100s (possibly 1000s) of		
			reclaimed and certified oil and gas		
		The data sets in the case study represented	sites in northern Alberta; many of		
		young sites (all 5 years or less with exception	which will have records relating to		
		of 1 data set which had 10 years of	the presence of noxious weeds		
		measurement). The long-term persistence (or	and other major vegetation at the		
		nack thereof) was not confirmed by these	time of certification. These sites		
		allaryses and future research should examine	strong province wide analysis		
		or 10+ years nost forest canopy closure)	which would demonstrate the		
		of tor years post forest canopy closure).	long-term persistence (or lack		
			thereof) of noxious weeds		
2	Literature	Improved understand of noxious weed	Conduct competition study		
-	review	physiology (capacity for competing with	between select noxious weeds		
		woody species) in a reclamation setting.	and woody species (focusing on		
			range of species morphologies);		
			this could be done in an outdoor		
			but controlled (in terms of other		
			vegetation) plot study and/or		
			potentially in a greenhouse		
			container trial (providing		
			sufficiently large containers). This		
			study should also compare		
			'competition' that woody species		
			would normally be exposed to in		
			reclamation setting to provide		
			context around competition		
			exposure (e.g., ask the question,		
			are perennial sow thistles of		
			perennial clovers more of a		
1			competition issue for survival and		

3	Literature review and Retrospective case study	The literature review found little evidence that many of the noxious weeds currently under management are actually problematic for forest development. Similarly, the retrospective case study also found little to no evidence that noxious plant species were inhibiting forest tree and shrub cover. The case study analysis was limited to correlations and observations of relative dominance over time. There still remains a need to explore, in an experimental setting, thresholds in noxious plant cover in relation to woody vegetation development to confirm that these species do not pose a significant risk to forest development.	Following from the suggestion in (2) the same (or similar) study could also look at threshold rates of competing noxious weed competition to ask the question – how much cover (or number of plants) is too much (are too many) for woody species?
4	Retrospective case study	In addition, this analysis coarsely examined overall woody vegetation development but did not examine species-specific patterns or potential constraints in growth due to noxious weeds.	More specifically to the points above, attention should be given to provide confirmatory evidence that most woody species follow the general patterns observed in this work.
5	Risk analysis framework	The risk analysis framework developed here was conceptual, based on the original RAT and considering key vegetation parameters identified in the retrospective case study. However, the RecRAT would require substantial additional data input (and likely model development) to provide quantitative and robust risk ratings.	Clear threshold level data would need to be provided as guidance on risk ratings (for the exposure risk). It would also need to be validated to identify what regions are truly 'green', 'yellow' or 'red'. Example study sites would be needed that represent the range of possible conditions to validate this chart.

6.0 REFERENCES

- Alberta Agriculture and Forestry, nd. Risk Assessment Calculator. Alberta Agriculture and Forestry, Edmonton, Alberta. Website: <u>http://www.agric.gov.ab.ca/app19/calc/risk/riskcalculator.jsp</u>
- Alberta Environment and Sustainable Resource Development. 2012. Weed Management on Industrial Sites. Alberta Environment and Sustainable Resource Development, Edmonton, Alberta. Alberta Environment and Sustainable Resource Development R&R/12-01. 7 pp. http://aep.alberta.ca/forms-mapsservices/publications/documents/WeedManagementIndustrialSites-FS-Jul2012.pdf
- Alberta Sustainable Resource Development. 2004. Forest Management Herbicide Reference Manual. Alberta Sustainable Resource Development, Edmonton, Alberta. Publication Number T/030. 59 pp. Available at: https://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/formain15749/\$file/Herb2004.pdf ?OpenElement.
- 4. Government of Alberta. 2008. Weed Control Act. Statutes of Alberta, 2008. Chapter W-5.1. Government of Alberta, Edmonton, Alberta. 14 pp. Available at: http://www.qp.alberta.ca/1266.cfm?page=W05P1.cfm&leg_type=Acts&isbncln=978077976060 2.Government of Alberta, 2010. Weed Control Regulation. Alberta Regulation AR 19/2010. Government of Alberta, Edmonton, Alberta. 8 pp. Available at: http://www.qp.alberta.ca/1266.cfm?page=2010_019.cfm&leg_type=Regs&isbncln=9780779792 474.
- Government of Alberta. 2010. Weed Control Regulation. Alberta Regulation AR 19/2010. Government of Alberta, Edmonton, Alberta. 8 pp. Available at: http://www.qp.alberta.ca/1266.cfm?page=2010_019.cfm&leg_type=Regs&isbncln=9780779792 474.
- Government of Alberta. 2013. 2010 Reclamation Criteria for Wellsites and Associated Facilities for Forested Lands (Updated July 2013). Government of Alberta, Edmonton, Alberta. 65 pp. Available at: https://open.alberta.ca/dataset/9df9a066-27a9-450e-85c7-1d56290f3044/resource/09415142-686a-4cfd-94bf-5d6371638354/download/2013-2010-Reclamation-Criteria-Wellsites-Forested-Lands-2013-07.pdf.
- Langor, D.W., E.K. Cameron, C.J.K MacQuarrie, A. McBeath, A. McClay, B. Peter, M. Pybus, T. Ramsfield, K. Ryall, T. Scarr, D. Yemshanov, I. DeMerchant, R. Foottit, and G.R. Pohl, 2014. *Nonnative Species in Canada's Boreal Zone: Diversity, Impacts, and Risk*. Environmental Reviews 22: 372–420. Available at: http://www.nrcresearchpress.com/doi/pdf/10.1139/er-2013-0083.
- 8. Lenth, R., 2018. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.0. (<u>https://CRAN.R-project.org/package=emmeans</u>)
- Ramsfield, T., K. Ryall, T. Scarr, D. Temshanov, I. DeMerchant, R. Foottit and G.R. Pohl, 2014. Non-native species in Canada's boreal zone: diversity, impacts, and risk. *Environmental Reviews*; 22: 372-420.
- 10. R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (<u>https://www.R-project.org/</u>)

- Small, C., D. Degenhardt, B. Drozdowski, S. Thacker, C.B. Powter, A. Schoonmaker and S. Schreiber, 2018. Optimizing Weed Control for Progressive Reclamation: Literature Review. InnoTech Alberta, Edmonton, Alberta. 48 pp.
- Thompson, D.G., and D.G. Pitt. 2011. Frequently Asked Questions (FAQs) On the Use of Herbicides in Canadian Forestry. Canadian Forest Service, Sault Ste. Marie, Ontario. Technical Note No. 112. 7 pp. Available at: http://www.cfs.nrcan.gc.ca/pubwarehouse/pdfs/32344.pdf.
- Welham, C., 2010. Oil Sands Terrestrial Habitat and Risk Modeling for Disturbance and Reclamation – Phase I Report. Oil Sands Research and Information Network, School of Energy and the Environment, University of Alberta, Edmonton, Alberta. OSRIN Report No. TR-8. 109 pp. https://era.library.ualberta.ca/downloads/m900nt69d
- Welham, C. and B. Seely, 2011. Oil Sands Terrestrial Habitat and Risk Modelling for Disturbance and Reclamation – Phase II Report. Oil Sands Research and Information Network, School of Energy and the Environment, University of Alberta, Edmonton, Alberta. OSRIN Report No. TR-15. 93 pp. http://hdl.handle.net/10402/era.24547
- Welham, C. and B. Seely, 2013. Oil Sands Terrestrial Habitat and Risk Modelling for Disturbance and Reclamation: The Impact of Climate Change on Tree Regeneration and Productivity – Phase III Report. Oil Sands Research and Information Network, School of Energy and the Environment, University of Alberta, Edmonton, Alberta. OSRIN Report No. TR-36. 65 pp. http://hdl.handle.net/10402/era.31900
- 16. Wickham, H., 2017. tidyverse: Easily Install and Load the 'Tidyverse'. R package version 1.2.1. (<u>https://CRAN.R-project.org/package=tidyverse</u>)

Table A1. Data sets analyzed in the study with data file origin, the first year measured since reclamation and the number of measurement points conducted. Note that not all studies were measured annually. *Vegetation surveys were conducted and compiled by NAIT staff.

Reclamation site	Origin	Year first measured	Number of measurement points	Post-reclamation age (years) of measurement points
CNRL Airstrip*	CNRL	2015	4	1-4
ConocoPhillips /				1-5, 10
Nexen 2004	ConocoPhillips	2005	6	
construction				
ConocoPhillips	ConocoPhillips	2016	3	1-3
Stockpile*				4 5
CNRL Remote	CNRL	2012	5	1-5
CNPL Delineation				1_/
Wells*	CNRL	2012	4	1°4
Suncor Base Mine	Suncor	2014	3	1, 3, 5

Table A2. Number of plot replicates at each reclamation site pooled by years since reclamation.

	Years since reclamation						
Reclamation site	1	2	3	4	5	10	Total
CNRL Airstrip	375	525	525	525			1950
ConocoPhillips / Nexen 2004 construction	400	400	400	400	400	400	2400
ConocoPhillips Stockpile	222	277	282				781
CNRL Remote Sump	30	135	135	135	135		570
CNRL Delineation Wells	18	18	18	18			72
Suncor Base Mine	145		194		194		533

Table A3. List of individual species (or genus's of closely related species in the case of clovers) and vegetation cover types analyzed in this study.

Noxious weeds					
Perennial sow thistle (Sonchus arvensis)					
Canada thistle (Cirsium arvense)					
Scentless chamomile (Tripleurospermum inodorum)					
Tall buttercup (Ranunculus acris)					
Common tansy (Tanacetum vulgare)					
Non-native species presented alongside noxious weeds					
Sweet clover (<i>Melilotus</i> spp.)					
Perennial clovers (Trifolium spp.)					
Vegetation Cover Types					
Woody (all trees and shrubs)					
Native forbs					
Non-native forbs (excludes noxious weeds)					
Grasses (native and non-native species grouped)					
Noxious weeds (only those species on the noxious weed list)					

Table A4. Correlation coefficients for woody species vs. cover types (native forbs, non-native forbs, grasses and noxious weed cover) at six reclamation sites over a period of ten years since reclamation. Black font color denotes positive correlations, red font color denotes negative correlations. "---" = no measurements taken; "ZC" = zero cover for woody or cover type but present in different year. Bold correlation coefficients were significant at P < 0.05.

	Years since reclamation					
	1	2	3	4	5	10
Native forb cover						
CNRL Airstrip	0.35	0.27	0.05	0.13		
ConocoPhillips / Nexen 2004 construction	0.07	0.33	0.02	0.07	-0.18	-0.16
ConocoPhillips Stockpile	0.45	0.05	0.48			
CNRL Remote Sump	ZC	0.32	-0.04	0.6	0.65	
CNRL Delineation Wells	ZC	0.61	-0.43	0.45		
Suncor Base Mine	0.2		0.02		0.01	
<u>Non-native forb cover</u>						
CNRL Airstrip	-0.08	0.14	-0.08	-0.1		
ConocoPhillips / Nexen 2004 construction	0.76	-0.24	0.03	0.03	0.17	-0.2
ConocoPhillips Stockpile	0.1	-0.28	-0.12			
CNRL Remote Sump	ZC	-0.73	-0.18	0.54	0.04	
CNRL Delineation Wells	ZC	-0.63	-0.37	-0.42		
Suncor Base Mine	0.04		-0.11		-0.16	
<u>Grasses</u>						
CNRL Airstrip	-0.1	-0.03	-0.09	-0.07		
ConocoPhillips / Nexen 2004 construction	0.04	0.02	-0.17	-0.27	-0.23	-0.4
ConocoPhillips Stockpile	0.33	0.1	0.28			
CNRL Remote Sump	ZC	-0.46	-0.06	0.59	-0.02	
CNRL Delineation Wells	ZC	<0.01	-0.27	-0.41		
Suncor Base Mine	0.21		<0.01		-0.16	
<u>Noxious weed cover</u>						
CNRL Airstrip	0.66	0.13	0.28	<0.01		
ConocoPhillips / Nexen 2004 construction	ZC	0.12	ZC	-0.28	0.06	0.33
ConocoPhillips Stockpile	0.26	0.13	0.08			
CNRL Remote Sump	ZC	-0.12	-0.05	0.07	0.61	
CNRL Delineation Wells	ZC	ZC	ZC	0.66		
Suncor Base Mine	0.25		0.07		-0.02	

Table A5. Correlation coefficients for woody species vs. noxious weeds and non-native forb species at six reclamation sites over a period of ten years since reclamation. Black font color denotes positive correlations, red font color denotes negative correlations. "---" = no measurements taken; "ZC" = zero cover for woody or cover type but present in different year; "n < 3" = not enough finite observations to perform Pearson's correlation test; "NP" = not present at any time point. Bold correlation coefficients were significant at P < 0.05.

			Years since	reclamatio	on	
	1	2	3	4	5	10
<u>Perennial sow thistle</u>						
CNRL Airstrip	n < 3	0.38	-0.07	0.04		
ConocoPhillips / Nexen 2004 construction	ZC	0.14	ZC	-0.28	0.06	0.85
ConocoPhillips Stockpile	0.41	0.01	0.04			
CNRL Remote Sump	ZC	-0.12	-0.12	0.07	ZC	
CNRL Delineation Wells	ZC	ZC	ZC	0.66		
Suncor Base Mine	0.24		0.07		-0.01	
<u>Canada thistle</u>						
CNRL Airstrip	0.65	-0.04	0.55	0.05		
ConocoPhillips / Nexen 2004 construction	ZC	ZC	ZC	ZC	ZC	n < 3
ConocoPhillips Stockpile	n < 3	n < 3	n < 3			
CNRL Remote Sump	ZC	ZC	-0.2	ZC	ZC	
CNRL Delineation Wells	ZC	n < 3	n < 3	ZC		
Suncor Base Mine	-0.26		-0.04		-0.14	
Scentless chamomile						
CNRL Airstrip	ZC	ZC	ZC	-0.11		
ConocoPhillips / Nexen 2004 construction	ZC	ZC	n < 3	ZC	ZC	ZC
ConocoPhillips Stockpile	0.3	0.16	-0.05			
CNRL Remote Sump	NP	NP	NP	NP	NP	
CNRL Delineation Wells	NP	NP	NP	NP		
Suncor Base Mine	NP		NP		NP	
Tall buttercup						
CNRL Airstrip	NP	NP	NP	NP		
ConocoPhillips / Nexen 2004 construction	ZC	n < 3	ZC	ZC	ZC	ZC
ConocoPhillips Stockpile	NP	NP	NP			
CNRL Remote Sump	NP	NP	NP	NP	NP	
CNRL Delineation Wells	NP	NP	NP	NP		
Suncor Base Mine	NP		NP		NP	

Table A5 continued

	Years since reclamation					
	1	2	3	4	5	10
Common tansv	-	-	-	•	-	
CNRL Airstrip	NP	NP	NP	NP		
ConocoPhillips / Nexen		ND	ND	ND	ND	ND
2004 construction	NΡ	NP	NP	NP	NP	NP
ConocoPhillips Stockpile	NP	NP	NP			
CNRL Remote Sump	NP	NP	NP	NP	NP	
CNRL Delineation Wells	NP	NP	NP	NP		
Suncor Base Mine	n < 3		n < 3		n < 3	
<u>Sweet clover</u>						
CNRL Airstrip	0.01	0.1	0.16	-0.1		
ConocoPhillips / Nexen	n < 3	ZC	ZC	ZC	ZC	n < 3
2004 construction	_					
ConocoPhillips Stockpile	0.16	-0.17	-0.13			
CNRL Remote Sump	ZC	0.71	-0.16	0.58	0.13	
CNRL Delineation Wells	ZC	n < 3	ZC	n < 3		
Suncor Base Mine	-0.01		-0.09		-0.04	
<u>Perennial clovers</u>						
CNRL Airstrip	0.07	0.13	<0.01	-0.11		
ConocoPhillips / Nexen	ZC	-0.02	0.05	-0.25	-0.18	-0.42
2004 construction	20	0.02	0.00	0.20	0.10	
ConocoPhillips Stockpile	0.04	-0.19	-0.1			
CNRL Remote Sump	ZC	ZC	-0.26	0.97	-0.32	
CNRL Delineation Wells	ZC	-0.45	-0.21	-0.68		
Suncor Base Mine	-0.46		0.53		0.23	

Table A6. Table summary illustrating trending increase or decrease in relative dominance of vegetation cover groups, noxious weeds and clovers over time by site type. Symbols indicate increasing (\uparrow), decreasing (\downarrow), no change (–) or highly variable (\cong) trends in relative dominance over time. *Denotes trends that are visible, but the magnitude of the change was very small (<2%). NP = not present.

CNR Airstr		Conoco / Nexen 2004 construction	ConocoPhillips Stockpile	CNRL Remote Sump	CNRL Delineation Wells	Suncor Base Mine	
Woody	\uparrow		1		↑		
Native forbs	_	\downarrow	≅	_	\downarrow	\downarrow	
Non-native forbs	\downarrow	^∗	\downarrow	1	\downarrow	\downarrow	
Grasses	1	\downarrow	≅	≅	\uparrow	1	
Noxious weeds	1	_	^∗	\downarrow	↓*	↓*	
Perennial sow thistle	^∗	\downarrow	1	\downarrow	\downarrow *	≅	
Canada thistle	^∗	NP	_	\downarrow	NP	NP	
Scentless chamomile	_	NP	_	NP	NP	NP	
Sweet clover	ĩ	_	\downarrow	1	_	_	
Perennial clover	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	_	

Table A7. Alberta Agriculture and Forestry risk assessment tool questions and inputted responses for the three commonly occurring noxious weeds (sow thistle, Canada thistle and scentless chamomile) observed from the case study data.

#	Question	Sow thistle	Canada thistle	Scentless chamomile	Potential responses					
EXPC	SURE RISK	•	•		•					
1	Is the species present in the assessment area?	Confirmed	Confirmed	Confirmed	Not present	Likely Not present	Likely Present	Confirmed	Unknown	
2	What is the abundance of the species in the assessment area?	Scattered	Scattered	Abundant	No abundance	Rare / Trace	Occasional	Scattered	Abundant	Unknown
3	How is the species distributed within the assessment area?	Widespread	Localized	Widespread	No distribution	Isolated	Localized	Widespread	Unknown	
4	What are the potential invasion pathways into the assessment area?	Combination of natural and anthropogenic pathways	Combination of natural and anthropogenic pathways	Combination of natural and anthropogenic pathways	Only natural pathways	Only anthropogenic pathways	Combination of natural and anthropogenic pathways	Unknown		
5	What is the likelihood of re- introduction from the source of the invasion?	Continuous / ongoing re-intro possible	Continuous / ongoing re-intro possible	Sporadic	Unlikely, original intro one- time occurrence	Sporadic	Continuous / ongoing re-intro possible	Unknown		
6	How likely is the organism to survive in transit?	likely to survive but number of individuals originally transported is reduced	likely to survive but number of individuals originally transported is reduced	likely to survive but number of individuals originally transported is reduced	will not survive	limited survival	likely to survive but number of individuals originally transported is reduced	likely to survive with no negative effect the number of individuals being transported	Unknown	
7	What is the likelihood of detecting the organism along its invasion pathway(s) into the assessment area?	likely to be missed	likely to be missed	likely to be missed	easy to detect	somewhat difficult to detect, mechanisms for detection exist	somewhat difficult to detect, no mechanisms for detection exist	likely to be missed	Unknown	
8	If introduced, how many individuals are likely to be released?	few individuals, multiple introduction events	few individuals, multiple introduction events	few individuals, multiple introduction events	one	few individuals, one introduction event	few individuals, multiple introduction events	many individuals, one or multiple introduction events	Unknown	
9	How much habitat is available for the species within the assessment area?	Less than half of the area	Less than half of the area	Less than half of the area	No available Habitat	Less than half of the area	Majority of the area	Entire area	Unknown	
10	How can the climate (i.e. weather) within the assessment area affect the survival of the species?	No limiting effect	No limiting effect	No limiting effect	Prevents survival	Limits survival	No limiting effect	Promote survival	Unknown	
11	Does the species have a broad tolerance to environmental conditions?	can establishes in a broad range of environmental conditions	can establishes in a broad range of environmental conditions	can establishes in a broad range of environmental conditions	establishes only in a narrow range of environmental conditions	rarely establishes in less than ideal conditions	sometimes establishes in less than ideal conditions	can establishes in a broad range of environmental conditions	Unknown	
12	Has the organism demonstrated the ability to colonize undisturbed or natural communities?	does not invade natural/undisturbed communities	colonizes natural communities (infrequently) but prefers communities with major disturbances (frequently)	colonizes natural communities (infrequently) but prefers communities with major disturbances (frequently)	does not invade natural/undisturbed communities	colonizes in communities with major disturbance only	colonizes natural communities (infrequently) but prefers communities with major disturbances (frequently)	often colonizes natural or undisturbed communities	Unknown	

13	Are the organism's specific requirements for reproduction available in the assessment area?	species requires no specific requirements, or all requirements are available.	species requires no specific requirements, or all requirements are available.	species requires no specific requirements, or all requirements are available.	specific requirements not available	some specific requirement(s) are available	most requirements for reproduction are available	species requires no specific requirements, or all requirements are available.	Unknown	
14	What is the frequency of sexual reproduction?	Once per year	Once per year	Once per year	Almost Never	Less than once a year	Once per year	More than once per year	Unknown	
15	What is the rate of growth to reproductive maturity?	Rapid growth	Rapid growth	Rapid growth	Slow growth	Moderate growth	Rapid growth	Unknown	Challown	
16	How many viable offspring can the organism produce at one time?	Many	Many	Many	Very few or none	Few	Moderate	Many	Unknown	
17	Is asexual reproduction (e.g. vegetative reproduction or self- fertilization) an important aspect of this organism's reproduction?	None	Moderately Important	None	None	Not important	Moderately Important	Highly important	Unknown	
18	Does the opportunity exist to hybridize naturally with species present in the assessment area?	no close relatives, little to no chance of hybridization	no close relatives, little to no chance of hybridization	no close relatives, little to no chance of hybridization	no close relatives, little to no chance of hybridization	one or two hybridization opportunities but likelihood of occurrence is low	many hybridization opportunities exist but likelihood of occurrence is low	many hybridization opportunities exist and likelihood of occurrence is high	Unknown	
19	Are there known natural control agents, including predators, in the assessment area?	Unknown	Unknown	Unknown	Predators and/or control agents are or have the potential to severely to completely restricting population growth	Predators and/or control agents are present and are or have the potential to minimizing population growth	Predators and/or control agents are present but are not or do not have the potential to affecting population growth	No known control agents present	Unknown	
20	To what degree can the organism disperse naturally?	Local dispersal	Local dispersal	Local dispersal	No potential	Local dispersal	Regional dispersal	Provincial dispersal	Unknown	
21	To what degree will anthropogenic mechanisms assist the dispersal of this species within the assessment area?	Several mechanisms	Several mechanisms	Several mechanisms	No mechanisms	Few mechanisms	Several mechanisms	Many mechanisms	Unknown	
22	What is the rate of dispersal once the species is released or disperses into a new area?	Moderate rate of dispersal	Moderate rate of dispersal	Slow rate of dispersal	Does not disperse	Slow rate of dispersal	Moderate rate of dispersal	Rapid rate of dispersal	Unknown	
ENVI	RONMENTAL RISK			·	•	•		·		
23	Is the species known to compete for resources with	Madamata affaat	Madarata offaat	Moderate officiat	No offect	Mild offect	Moderate offect	Course offect	Linite orten	
24	Is the species known to compete for resources with secure or abundant native	Mild ff	Mild ff i	Mild ff i		Mile 6	Madanet SC (Unin	
25	species? Is the species known to	Mild effect	Mild effect	Mild effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
25	compete for resources with vulnerable or "at risk" species?	Moderate effect	Moderate effect	Moderate effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
26	Is the species a predator or parasite of desired non-native species?	Unknown	Unknown	Unknown	No effect	Mild effect	Moderate effect	Severe effect	Unknown	

									1	
27	Is the species a predator or									
	parasite of secure or abundant									
	native species?	Unknown	Unknown	Unknown	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
28	Is the species a predator or									
	parasite of vulnerable or "at									
	risk" species?	Unknown	Unknown	Unknown	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
29	Is the species a host or vector									
	for known diseases, parasites,									
	or pests that will cause harm									
	to desired non-native species?	Unknown	Unknown	Unknown	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
30	Is the species a host or vector									
	for known diseases, parasites,									
	or pests that will cause harm									
	to secure or abundant native									
	species?	Unknown	Unknown	Unknown	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
31	Is the species a host or vector									
	for known diseases, parasites,									
	or pests that will cause harm									
	to vulnerable or "at risk"									
	species?	Unknown	Unknown	Unknown	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
32	Is the species able to hybridize									
1	with desired non-native									
	species?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
33	Is the species able to hybridize									
	with secure or abundant native									
	species?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
34	Is the species able to hybridize									
	with vulnerable or "at risk"									
	species?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
35	What is the potential level of									
	effect on abiotic or ecosystem									
	processes?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
ECON	OMIC									
36	What are the expected effects				[
	of the species on the crop									
1	industry?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
37	What are the expected effects									
	of the species on the livestock									
	industry?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
38	What are the expected effects									
-	of the species on the dairy									
	farm industry?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
39	What are the expected effects									
	of the species on the									
1	greenhouse industry?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
40	What are the expected effects									İ
	of the species on the									
1	aquaculture industry?	Unknown	Unknown	Unknown	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
41	What are the expected effects	0	C maile with	C maio an	110 011000				C mano mi	
1	of the species on the									
1	commercial and recreational									
	fishing industry?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown	
	instang maasa j.	110 011000	110 011000	110 011000	110 011000	TITU CITCOL		Service erreet	C111111 0 11 11	1

1.0	TIT 1 00			Г					1	1	<u> </u>	
42	What are the expected effects											
	of the species on the food											
	processing industry?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown			
43	What is the potential risk to											
	the forestry industry?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown			
44	What is the potential risk to											
	the non-timber forest product											
	industry?	Unknown	Unknown	Unknown	No effect	Mild effect	Moderate effect	Severe effect	Unknown			
45	What will be the eveneted	UIKIIOWII	UIKIOWI	UIKIIOWII	NO CITCCI	Ivilla chiect	Wioderate effect	Severe effect	UIIKIIOWII			
43	what will be the expected											
	effects on the tourism	NT CC /	NT 66 (NL CC /	NT CC (NC11 CC /	N. 1	0 00 1	T.T. 1			
1.5	industry?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown			
46	What will be the expected											
	effects on the energy											
	industry?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown			
47	What are the expected effects											
	of the species on											
	infrastructure?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown			
48	What will be the expected											
	effects on the health care											
	industry?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown			
49	What will be the expected											
	effects on Alberta's exports?	N. effect	N. effect	No. offerst	NTff	Mill - CC4	Madamata affaat	Comment offer at	T.T., 1			
	enteets on theerta's exports.	No effect	No effect	No effect	No effect	wind effect	Moderate effect	Severe effect	Unknown			
SOCIA	L	1			-	•				1		
50	What will be the expected											
	effects on human health and											
	well-being?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown			
51	What will be the expected											
	effects on recreation activities?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown			
52	What will be the expected	Tio enter	110 011001	110 011000	110 011000		intodorate orreet	Dorono onicot	ennine mi			
52	affects on aesthetic values?				DT CC	3 611 1 66		G	X X 1			
		Mild effect	Mild effec	Mild effect	No effect	NIIId effect	Moderate effect	Severe effect	Unknown			
53	What will be the expected											
	effects on the urban											
	environment?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown			
54	To what extent will the species											
	decrease scientific research											
	opportunities?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown			
55	What will be the expected											
	effects of the species on places											
	of traditional value or cultural											
	value?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown			
56	To what extent will the species											-
	lead to reduced or lost traditional											
	habitats or food supplies?	NT 66 (NT 66 (N. CC /	NT CC (N.C.1.1. CC /		CI (C) (TT 1			
		No effect	ino effect	INO EIIECT	INO ETTECT	NIIIa errect	ivioderate effect	Severe effect	Unknown		+	
57	To what extent will the species											
	decrease nature-based											
	educational opportunities?	No effect	No effect	No effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown		\square	
58	Will the species affect the											
	perception that something of											
	natural value will continue to											
	exist?	Mild effect	t Mild effec	t Mild effect	No effect	Mild effect	Moderate effect	Severe effect	Unknown			

APPENDIX B: FIGURES

Figure B1. Mean Pearson correlation coefficients woody cover vs. cover types and species by reclamation site. Circles represent individual correlation coefficients (by Site and Year). Filled circles are coefficients that are significant, hollow circles are coefficients that are not significant ($\alpha < 0.05$). If no mean values are present (bars), not enough finite observations were available to perform Pearson's correlation test.

Figure B2. Mean probability of species presence at six reclamation sites (across years). Error bars represent the 95% confidence interval.

Figure B3. Relative dominance and total cover at the CNRL Airstrip reclamation site for vegetation cover types (a, b) and noxious weed species and non-native nuisance species (c, d). Error bars represent one standard error of the mean. Note: Noxious weed species were excluded from non-native cover values and were treated separately.

Figure B4. Relative dominance and total cover at the ConocoPhillips/Nexen 2004 construction reclamation site for vegetation cover types (a, b) and noxious weed species and non-native nuisance species (c, d). Error bars represent one standard error of the mean. Note: Noxious weed species were excluded from non-native cover values and were treated separately.

Figure B5. Relative dominance and total cover at the ConocoPhillips Stockpile reclamation site for vegetation cover types (a, b) and noxious weed species and non-native nuisance species (c, d). Error bars represent one standard error of the mean. Note: Noxious weed species were excluded from non-native cover values and were treated separately.

Figure B6. Relative dominance and total cover at the CNRL Remote Sump reclamation site for vegetation cover types (a, b) and noxious weed species and non-native nuisance species (c, d). Error bars represent one standard error of the mean. Note: Noxious weed species were excluded from non-native cover values and were treated separately.

Figure B7. Relative dominance and total cover at the CNRL Delineation Wells reclamation site for vegetation cover types (a, b) and noxious weed species and non-native nuisance species (c, d). Error bars represent one standard error of the mean. Note: Noxious weed species were excluded from non-native cover values and were treated separately.

Figure B8. Relative dominance and total cover at the Suncor Base Mine reclamation site for vegetation cover types (a, b) and noxious weed species and non-native nuisance species (c, d). Error bars represent one standard error of the mean. Note: Noxious weed species were excluded from non-native cover values and were treated separately.

Figure B9. Exposure versus Effect ratings for sow thistle, Canada thistle and scentless chamomile, based on completion of the Alberta Agriculture and Forestry risk assessment tool for invasive species. Answers to the questions were based on the current condition and surrounding area of the ConocoPhillips Reclamation Stockpile.

APPENDIX C: PEARSON CORRELATIONS

Figure C1. Pearson correlation of woody cover and native forb cover by years since reclamation at the CNRL Airstrip reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C2. Pearson correlation of woody cover and non-native forb cover by years since reclamation at the CNRL Airstrip reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C3. Pearson correlation of woody cover and grass cover by years since reclamation at the CNRL Airstrip reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C4. Pearson correlation of woody cover and noxious weed cover by years since reclamation at the CNRL Airstrip reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C5. Pearson correlation of woody cover and perennial sow thistle cover by years since reclamation at the CNRL Airstrip reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C6. Pearson correlation of woody cover and Canada thistle cover by years since reclamation at the CNRL Airstrip reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C7. Pearson correlation of woody cover and scentless chamomile cover by years since reclamation at the CNRL Airstrip reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C8. Pearson correlation of woody cover and sweet clover cover by years since reclamation at the CNRL Airstrip reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C9. Pearson correlation of woody cover and perennial clovers cover by years since reclamation at the CNRL Airstrip reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C10. Pearson correlation of woody cover and native forb cover by years since reclamation at the ConocoPhillips / Nexen 2004 construction reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C11. Pearson correlation of woody cover and non-native forb cover by years since reclamation at the ConocoPhillips / Nexen 2004 construction reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C12. Pearson correlation of woody cover and grass cover by years since reclamation at the ConocoPhillips / Nexen 2004 construction reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C13. Pearson correlation of woody cover and noxious weed cover by years since reclamation at the ConocoPhillips / Nexen 2004 construction reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C14. Pearson correlation of woody cover and perennial sow thistle cover by years since reclamation at the ConocoPhillips / Nexen 2004 construction reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C15. Pearson correlation of woody cover and Canada thistle cover by years since reclamation at the ConocoPhillips / Nexen 2004 construction reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis.

Figure C16. Pearson correlation of woody cover and scentless chamomile cover by years since reclamation at the ConocoPhillips / Nexen 2004 construction reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis.

Figure C17. Pearson correlation of woody cover and tall buttercup cover by years since reclamation at the ConocoPhillips / Nexen 2004 construction reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis.

Figure C18. Pearson correlation of woody cover and sweet clover cover by years since reclamation at the ConocoPhillips / Nexen 2004 construction reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis.

Figure C19. Pearson correlation of woody cover and perennial clover cover by years since reclamation at the ConocoPhillips / Nexen 2004 construction reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis.

ConocoPhillips Stockpile

Figure C20. Pearson correlation of woody cover and native forb cover by years since reclamation at the ConocoPhillips Stockpile reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C21. Pearson correlation of woody cover and non-native forb cover by years since reclamation at the ConocoPhillips Stockpile reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C22. Pearson correlation of woody cover and grass cover by years since reclamation at the ConocoPhillips Stockpile reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C23. Pearson correlation of woody cover and noxious weed cover by years since reclamation at the ConocoPhillips Stockpile reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C24. Pearson correlation of woody cover and perennial sow thistle cover by years since reclamation at the ConocoPhillips Stockpile reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C25. Pearson correlation of woody cover and Canada thistle cover by years since reclamation at the ConocoPhillips Stockpile reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis.

Figure C26. Pearson correlation of woody cover and scentless chamomile cover by years since reclamation at the ConocoPhillips Stockpile reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C27. Pearson correlation of woody cover and sweet clover cover by years since reclamation at the ConocoPhillips Stockpile reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C28. Pearson correlation of woody cover and perennial clover cover by years since reclamation at the ConocoPhillips Stockpile reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C29. Pearson correlation of woody cover and native forb cover by years since reclamation at the CNRL Remote Sump reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C30. Pearson correlation of woody cover and non-native forb cover by years since reclamation at the CNRL Remote Sump reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C31. Pearson correlation of woody cover and grass cover by years since reclamation at the CNRL Remote Sump reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C32. Pearson correlation of woody cover and noxious weed cover by years since reclamation at the CNRL Remote Sump reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C33. Pearson correlation of woody cover and perennial sow thistle cover by years since reclamation at the CNRL Remote Sump reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C34. Pearson correlation of woody cover and Canada thistle cover by years since reclamation at the CNRL Remote Sump reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C35. Pearson correlation of woody cover and sweet clover cover by years since reclamation at the CNRL Remote Sump reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C36. Pearson correlation of woody cover and perennial clover cover by years since reclamation at the CNRL Remote Sump reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C37. Pearson correlation of woody cover and native forb cover by years since reclamation at the CNRL Delineation Wells reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C38. Pearson correlation of woody cover and non-native forb cover by years since reclamation at the CNRL Delineation Wells reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C39. Pearson correlation of woody cover and grass cover by years since reclamation at the CNRL Delineation Wells reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C40. Pearson correlation of woody cover and noxious weed cover by years since reclamation at the CNRL Delineation Wells reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C41. Pearson correlation of woody cover and perennial sow thistle cover by years since reclamation at the CNRL Delineation Wells reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C42. Pearson correlation of woody cover and Canada thistle cover by years since reclamation at the CNRL Delineation Wells reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis.

Figure C43. Pearson correlation of woody cover and sweet clover cover by years since reclamation at the CNRL Delineation Wells reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis.

Figure C44. Pearson correlation of woody cover and perennial clover cover by years since reclamation at the CNRL Delineation Wells reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis.

Figure C45. Pearson correlation of woody cover and native forb cover by years since reclamation at the Suncor Base Mine reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C46. Pearson correlation of woody cover and non-native forb cover by years since reclamation at the Suncor Base Mine reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C47. Pearson correlation of woody cover and grass cover by years since reclamation at the Suncor Base Mine reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C48. Pearson correlation of woody cover and noxious weed cover by years since reclamation at the Suncor Base Mine reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C49. Pearson correlation of woody cover and perennial sow thistle cover by years since reclamation at the Suncor Base Mine reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C50. Pearson correlation of woody cover and Canada thistle cover by years since reclamation at the Suncor Base Mine reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C51. Pearson correlation of woody cover and common tansy cover by years since reclamation at the Suncor Base Mine reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis.

Figure C52. Pearson correlation of woody cover and sweet clover cover by years since reclamation at the Suncor Base Mine reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

Figure C53. Pearson correlation of woody cover and perennial clover cover by years since reclamation at the Suncor Base Mine reclamation site. Red dots indicate zero cover which was excluded from the Pearson correlation analysis. The orange line represents a linear model fit to the data. r = Pearson correlation coefficient; p = probability; df = degrees of freedom.

APPENDIX D: MASTER SPECIES TABLE

List of all species found at each reclamation site grouped in the following classes: woody, native forbs, non-native forbs and grasses.

CNRL Airstrip	ConocoPhillips / Nexen construction 2004	CNRL Remote sump	ConocoPhillips Stockpile	CNRL Delineation Wells	Suncor Base Mine
<u>Woody</u>	<u>Woody</u>	<u>Woody</u>	<u>Woody</u>	<u>Woody</u>	<u>Woody</u>
Alnus viridis	Abies balsamea	Alnus incana	Alnus viridis	Alnus rugosa	Alnus crispa
Cornus sericea	Alnus crispa	Alnus viridis	Betula papyrifera	Betula papyrifera	Amelanchier alnifolia
Picea glauca	Alnus rugosa	Cornus sericea	Cornus sericia	Cornus canadensis	Arctostaphylos uva-ursi
Pinus banksiana	Amelanchier alnifolia	Picea glauca	Picea glauca	Cornus sericea	Artemisia campestris
Populus balsamifera	Arctostaphylos uva-ursi	Populus balsamifera	Pinus banksiana	Picea glauca	Astragalus alpinus
Populus tremuloides	Betula glandulosa	Populus tremuloides	Populus balsamifera	Populus balsamifera	Betula glandulosa
Ribes triste	Betula papyrifera	Ribes lacustre	Populus tremuloides	Ribes lacustre	Betula papyrifera
Rosa acicularis	Betula pumila	Ribes oxyacanthoides	Prunus pensylvanica	Ribes oxycanthoides	Betula pumila
Rubus idaeus	Cornus stolonifera	Rosa acicularis	Rosa acicularis	Ribes triste	Chenopodium album
Salix spp.	Corylus cornuta	Rubus idaeus	Rubus idaeus	Rosa acicularis	Cornus sericia
Sheperdia canadensis	Ledum groenlandicum	Salix spp.	Salix spp.	Rubus idaeus	Dasiphora fruticosa
Symphoricarpos albus	Lonicera dioica	Sheperdia canadensis	Vaccinium myrtilloides	Rubus pubescens	Larix laricina
	Lonicera involucrata	Vaccinium myrtilloides		Salix spp.	Myrica gale
<u>Native forbs</u>	Lonicera villosa		Native forbs	Sheperdia canadensis	Picea glauca
Achillea millefolium	Picea glauca	Native forbs	Achillea millefolium	Symphoricarpos albus	Pinus banksiana
Achillea sibirica	Pinus banksiana	Achillea millefolium	Achillia sibirica	Viburnum edule	Pinus contorta
Arnica chamissonis	Populus balsamifera	Achillea sibirica	Arenaria lateriflora		Populus balsamifera
Aster ciliolatus	Populus tremuloides	Aster ciliolatus	Aster ciliolatus	Native forbs	Populus tremuloides
Aster conspicuus	Prunus pensylvanica	Aster conspicuus	Aster conspicuus	Achillea millefolium	Prunus pensylvanica
Aster hesperius	Ribes glandulosum	Aster puniceus	Aster puniceus	Achillea sibirica	Ribes americanum
Aster puniceus	Ribes hudsonianum	Castilleja miniata	Chamerion angustifolium	Aralia nudicaulis	Ribes glandulosum
Castilleja miniata	Ribes lacustre	Cerastium nutans	Chenopodium album	Aster ciliolatus	Ribes hudsonianum
Castilleja raupii	Ribes oxyacanthoides	Chenopodium capitatum	Collomia linearis	Aster conspicuus	Ribes lacustre
Chamerion angustifolium	Ribes spp.	Collomia linearis	Corydalis aurea	Aster spp.	Ribes oxyacanthoides

CNRL Airstrip	ConocoPhillips / Nexen construction 2004	CNRL Remote sump	ConocoPhillips Stockpile	CNRL Delineation Wells	Suncor Base Mine
Collomia linearis	Ribes triste	Cornus canadensis	Epilobium glandulosum	Astralagus spp.	Rosa acicularis
Corydalis aurea	Rosa acicularis	Corydalis aurea	Epilobium latifolium	Epilobium angustifolium	Rubus idaeus
Epilobium glandulosum	Rubus idaeus	Epilobium angustifolium	Equisetum spp.	Epilobium glandulosum	Rumex occidentalis
Equisetum spp.	Salix spp.	Epilobium glandulosum	Fragaria virginiana	Equisetum spp.	Salix exigua
Fragaria virginiana	Shepherdia canadensis	Equisetum spp.	Galium boreale	Fragaria virginiana	Salix spp.
Galium boreale	Symphoricarpos albus	Erigeron glabellus	Galium triflorum	Galium boreale	Shepherdia canadensis
Galium triflorum	Symphoricarpos spp.	Fragaria vesca	Geranium becknellii	Galium triflorum	Viburnum edule
Gentiana amarella	Vaccinium angustifolium	Fragaria virginiana	Geum aleppicum	Geranium bicknellii	Viburnum opulus
Geranium bicknellii	Vaccinium caespitosum	Galium triflorum	Geum macrophyllum	Geum aleppicum	
Geum allepicum	Vaccinium myrtillus	Gentianella amarella	Hieracium umbellatum	Geum rivale	Native forbs
Geum macrophyllum	Vaccinium vitis-idaea	Geranium bicknellii	Koeleria cristata	Hierarcium umbellatum	Achillea millefolium
Hieracium umbellatum	Viburnum edule	Geum macrophyllum	Lathyrus ochroleucus	Lathyrus ochroleucus	Achillea sibirica
Lactuca tatarica		Hieracium umbellatum	Lathyrus venosus	Mertensia paniculata	Anemone canadensis
Lathyrus ochroleucus	Native forbs	Lathyrus ochroleucus	Mentha arvensis	Mitella nuda	Aquilegia brevistyla
Lathyrus venosus	Achillea millefolium	Lathyrus venosus	Mertensia paniculata	Petasites palmatus	Arnica chamissonis
Lepidium densiflorum	Achillea sibrica	Mentha arvensis	Potentilla norvegica	Plantago major	Artemisia campestris
Matricaria maritima	Actaea rubra	Mertensia paniculata	Rhinanthus borealis	Potentilla norvegica	Artemisia cana
Mertensia paniculata	Anemone riparia	Petasites palmatus	Rumex occidentalis	Rhinathus borealis	Artemisia frigida
Mitella nuda	Arabidopsis lyrata	Potentilla norvegica	Solidago canadensis	Veronica scutellata	Aster borealis
Petasites palmatus	Aralia nudicaulis	Ranunculus macounii	Stellaria longifolia	Vicia americana	Aster ciliolatus
Potentilla norvegica	Arenaria lateriflora	Rhinanthus borealis	Stellaria longipes	Viola renifolia	Aster conspicuus
Ranunculus sceleratus	Aster ciliolatus	Rubus pubescens	Thalictrum venulosum	Zizia aptera	Aster puniceus
Rhinanthus borealis	Aster conspicuus	Solidago canadensis	Urtica dioica		Aster spp.
Rorippa islandica	Aster laevis	Utrica dioica	Vicia americana	Non-native forbs	Astragalus agrestis
Rumex maritimus	Aster puniceus	Vicia americana		Cirsium arvense	Astragalus alpinus
Rumex occidentalis	Astragalus tenellus		Non-native forbs	Galeopis tetrahit	Astragalus americanus
Rumex salicifolius	Athyrium filix-femina	<u>Non-native forbs</u>	Capsella bursa pastoris	Medicago falcata	Astragalus canadensis
Solidago canadensis	Bidens cernua	Cirsium arvense	Cerastium vulgatum	Medicago sativa	Astragalus spp.
Stellaria longifolia	Cardamine pensylvanica	Medicago lupilina	Chenopodium album	Medicago spp.	Astragalus alpinus

CNRL Airstrip	ConocoPhillips / Nexen construction 2004	CNRL Remote sump	ConocoPhillips Stockpile	CNRL Delineation Wells	Suncor Base Mine
Stellaria media	Circaea alpina	Medicago sativa	Chenopodium capitatum	Melilotus officinalis	Barbarea orthoceras
Thalictrum sparsiflorum	Collomia linearis	Melilotus spp.	Cirsium arvense	Meliotus spp.	Caltha palustris
Typha latifolia	Cornus canadensis	Plantago major	Crepis tectorum	Sonchus arvense	Campanula rotundifolia
Vicia americana	Disporum trachycarpum	Polygonum aviculare	Descurania sophia	Taraxacum officinale	Chamerion angustifolium
	Dracocephalum parviflorum	Sonchus arvensis	Galeopsis tetrahit	Trifolium hybridum	Chenopodium capitatum
<u>Non-native forbs</u>	Dryopteris austiaca	Taraxacum officinale	Lepidium densiflorum		Collomia linearis
Capsella bursa-pastoris	Epilobium angustifolium	Trifolium hybridum	Matricaria martima	<u>Grasses</u>	Comandra umbellata
Cirsium arvense	Epilobium glaberrimum		Matricaria matricarioides	Agropyron dascytalum	Corydalis aurea
Galeopsis tetrahit	Epilobium palustre	<u>Grasses</u> Aaropyron	Medicago lupulina	Agropyron trachycaulum var. trachycaulum Aaropyron trachycaulum var.	Dasiphora fruticosa
Maianthemum canadense	Equisetum arvense	dasystachyum	Medicago sativa	unilaterale	Dracocephalum parviflorum
Matricaria matricaroides	Equisetum fluviatile	Agropyron intermedium	Meliolotusspp.	Agrostis scabra	Epilobium angustifolium
Medicago lupulina	Equisetum hyemale	Agropyron repens	Plantago major	Beckmannia syzigachne	Epilobium glaberrimum
Medicago sativa	Equisetum pratense	Agropyron trachycaulum var. trachycaulum Aaropyron trachycaulum	Polygonum arenastrum	Bromus ciliatus	Epilobium palustre
Melilotus spp.	Equisetum scirpoides	var. unilaterale	Polygonum aviculare	Calamagrostis canadensis	Equisetum arvense
Plantago major	Equisetum sylvaticum	Agrostis scabra	Polygonum erectum	Carex spp.	Equisetum hyemale
Polygonum arenastrum	Erigeron acris	Alopecurus aequalis	Sonchus arvensis	Deschampsia caespitosa	Equisetum pratense
Sonchus arvensis	Erigeron glacialis	Beckmannia syzigachne	Taraxacum officinale	Elymus innovatus	Equisetum scirpoides
Sonchus asper	Erigeron philadelphicus	Bromus ciliatus Calamagrostis	Trifolium hybridum	Koeleria macrantha	Equisetum sylvaticum
Sonchus oleacurus	Erysimum cheiranthoides	canadensis	Trifolium pratense	Phleum pratense	Erigeron acris
Sonchus uliginosus	Fragaria vesca	Carex spp.	Trifolium repens	Poa spp.	Erigeron canadensis
Taraxacum officinale	Fragaria virginiana	Deschampsia caespitosa			Eriophorum angustifolium
Thlaspi arvense	Galium boreale	Elymus innovatus	<u>Grasses</u>		Euphorbia serpyllifolia
Trifolium hybridum	Galium labradoricum	Hordeum jubatum	Agropyron dasyanthum		Fragaria vesca
Trifolium pratense	Galium trifidum	Lolium perenne	Agropyron Intermedium		Fragaria vesca
Trifolium repens	Geocaulon lividum	Phleum pratense	Agropyron trachycaulum var. Aaropyron trachycaulum var.	trachycaulum	Fragaria virginiana
	Geranium bicknellii	Poa spp.	unilaterale		Galium triflorum Galium boreale
<u>Grasses</u>	Geum aleppicum		Agrostis scabra		Gentianella amarella

CNRL Airstrip	ConocoPhillips / Nexen construction 2004	CNRL Remote sump	ConocoPhillips Stockpile	CNRL Delineation Wells	Suncor Base Mine
Agropyron trachycaulum var. trachycaulum Agropyron trachycaulum var.	Geum macrophyllum		Alopecurus aequalis		Geranium bicknellii
unilaterale	Geum rivale		Backmania syzigachne		Geum aleppicum
Agrostis scabra	Halenia deflexa		Bromus biebersteinii		Geum macrophyllum
Alopecurus aequalis	Hieracium umbellatum		Bromus ciliatus		Geum spp.
Beckmannia syzigachne	Impatiens noli-tangere		Bromus inermis		Hieracium umbellatum
Bromus ciliatus	Lactuca tatarica		Calamagrostis canadensis		Hippuris vulgaris
Bromus inermis	Lathyrus ochroleucus		Calamagrostis inexpansa		Juncus alpinoarticulatus
Calamagrostis candensis	Lathyrus venosus		Carex spp.		Juncus bufonius
Carex spp.	Linnaea borealis		Dactylis glomerata		Lathyrus ochroleucus
Deschampsia caespitosa	Lycopodium obscurum		Deschampsia caespitosa		Lathyrus venosus
Elymus innovatus	Lycopus uniflorus		Elymus innovatus		Lepidium densiflorum
Festuca rubra	Maianthemum canadense		Festuca ovina		Lysimachia thyrsiflora
Hordeum jubatum	Melampyrum lineare		Festuca rubra		Mentha arvensis
Phleum pratense	Mentha arvensis		Hordeum jubatum		Mertensia paniculata
Poa spp.	Mertensia paniculata		Phleum pratense		Moehringia lateriflora
Secale cereale	Mitella nuda		Poa spp.		Monolepis nuttalliana
	"Orchid" spp.		Poa palustris		Myrica gale
	Ozmorhiza depauperata		Rhynchospora alba		Parnassia palustris
	Pedicularis labradorica		Secale cereale		Petasites frigidus
	Petasites palmatus				Petasites palmatus
	Potentilla norvegica				Petasites sagittatus
	Potentilla tridentata				Polygonum lapathifolium
	Pyrola asarifolia				Potentilla norvegica
	Pyrola secunda				Potentilla tridentata
	Pyrola spp.				Pyrola asarifolia
	Pyrrocoma uniflora				Ranunculus macounii
	Ranunculus abortivus				Ranunculus sceleratus
	Rhinanthus borealis				Rhinanthus borealis
	Rubus pubescens				Rorippa islandica
CNRL Airstrip	ConocoPhillips / Nexen construction 2004	CNRL Remote sump	ConocoPhillips Stockpile	CNRL Delineation Wells	Suncor Base Mine
---------------	---	------------------	--------------------------	------------------------	--------------------------
	Scutellaria galericulata				
	Senecio eremophilus				Rosa acicularis
	Sium suave				Rumex occidentalis
	Solidago canadensis				Rumex occidentalis
	Stellaria longipes				Scirpus lacustris
	Stellaria spp.				Scutellaria galericulata
	Thalictrum venulosum				Senecio pauciflorus
	Trientalis borealis				Sibbaldia tridentata
	Urtica dioica				Solidago canadensis
	Veronica americana				Solidago graminifolia
	Veronica scutellata				Solidago simplex
	Vicia americana				Stachys palustris
	Viola adunca				Thalictrum venulosum
	Viola canadensis				Triglochin maritima
	Viola nephrophylla				Typha latifolia
	Viola palustris				Urtica dioica
	Viola renifolia				Vicia americana
					Viola adunca
	Non-native forbs				Viola canadensis
	Cirsium arvense				
	Galeopsis tetrahit				Non-native forbs
	Matricaria maritima				Artemisia absinthium
	Melilotus alba				Capsella bursa-pastoris
	Melilotus officinalis				Chenopodium album
	Plantago major				Cirsium arvense
	Ranunculus acris				Crepis tectorum
	Sonchus arvensis				Galeopsis tetrahit
	Sonchus asper				Lotus corniculatus
	Stellaria media				Matricaria maritima

CNRL Airstrip	ConocoPhillips / Nexen construction 2004	CNRL Remote sump	ConocoPhillips Stockpile	CNRL Delineation Wells	Suncor Base Mine
	Taraxacum officinale				Medicago lupulina
	Trifolium hybridum				Medicago sativa
	Trifolium pratense				Medicago spp.
	Trifolium repens				Melilotus alba
					Melilotus officinalis
	<u>Grasses</u>				Melilotus spp.
	Agropyron repens				Neslia paniculata
	Agropyron smithii				Plantago major
	Agropyron trachycaulum				Polygonum convolvulus
	Agrostis scabra				Senecio vulgaris
	Agrostis stolonifera				Sonchus arvensis
	Alopecurus aequalis				Tanacetum vulgare
	Beckmannia syzigachne				Taraxacum officinale
	Bromus ciliatus				Tragopogon dubius
	Bromus inermis				Trifolium hybridum
	Calamagrostis canadensis				Trifolium pratense
	Calamagrostis inexpansa				Trifolium pratense
	Calamagrostis stricta				<u>Grasses</u>
	Carex spp.				Data was not listed by species
	Cinna latifolia				
	Danthonia intermedia				
	Deschampsia caespitosa				
	Elymus innovatus				
	Elymus junceus				
	Festuca ovina				
	Festuca rubra				
	Hierochloe odorata				
	Hordeum jubatum				
	Koeleria macrantha				

CNRL Airstrip	ConocoPhillips / Nexen construction 2004	CNRL Remote sump	ConocoPhillips Stockpile	CNRL Delineation Wells	Suncor Base Mine
	Oryzopsis asperifolia				
	Phalaris arundinacea				
	Phleum pratense				
	Poa palustris				
	Poa pratensis				
	Typha latifolia				