

Resource Roads and Wetlands: Practical Applications to Maintain Hydrologic Connectivity

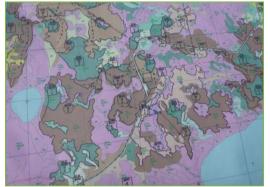
Clayton Gillies, RPF, RPBio Senior Researcher, FPInnovations

DUC Wetlands BMP Workshop January 20 – 21, 2016 Edmonton, Alberta

Outline

Opportunities to promote continued hydrologic function of wetlands

- Avoid
- Construction methods
- Education



Plan to avoid crossings

- Avoid crossing wetlands where practical
- Extensive landscape planning
 - minimize number of crossings
 - Identify control points
- Utilize maps/images, and inventory data to aid in the planning process
- Reconnaissance flights and ground truthing of planned routes

Protection of wetland during clearing

- Careful operating techniques
- Care taken to preserve forest floor / peat surface

- Choice of equipment
- Operating techniques
- Seasonal timing

Seasonal considerations

- Building access across wetlands during frozen conditions
- Surface material remains relatively intact when frozen
- Subsurface organics frozen to various depths
 - Techniques to promote frost penetration

Surface applications

- Matting and light-weight fill
- Used for temp access and removed after use
- Provides wide load distribution which eliminates rutting of travel surface
- Reduced compaction and settlement of underlying organic material

Culverts

- Commonly used for water management
- Number and spacing of culverts need to provide adequate flow (challenge is to meet the hydrologic needs of the wetland)
- Large diameter culverts provide a wider entrance for flow and deeper embedment opportunities
- Embedded culverts will cater to shallow subsurface flows

Culverts with logs

- Logs provide additional flow capacity
 - Wider flow path at low flows
 - Seasonal high flow passage
 - Temporary structure

Culverts

- Location and spacing need to be considered
 - Survey to locate low areas
 - Set spacing
 - Best approximation

Culvert spacing

	Stagnant	Moving – Slow Lateral Flow	Moving – Seasonal / Fluctuating
Culvert spacing range	Widely spaced	Mid – widely spaced	Closely spaced
Minimum culvert spacing - Permanent road	200 m	150 m	100 m
Minimum culvert spacing - Temporary road	250 m	150 m	150 m
Culvert diameter range	250 – 500 mm	500 – 800 mm	>800 mm

^a Where culverts are the chosen conduit, the length of the wetland crossing will help determine the number of recommended culverts. A minimum of 1 culvert should be placed regardless of crossing length.

^b The suggested range in spacing may be further influenced by site specific wetland characteristics. For example, where the crossing is located at a narrow area of the wetland, closer spacing of culverts may be required to accommodate the concentrated / funneled flow through this area. Edges of wetland crossings adjacent to upland dryer soils could provide better bearing with respect to culvert installation and potential settlement over time.

Culvert spacing

Corduroy

- Traditionally used to improve bearing requirements for weak soils; logs aid in distributing load resulting in reduced compaction
- Built on carefully cleared forest floor / peat surface
- Separation layer to prevent water passing voids from being infilled
- Water passing capabilities along entire length of structure

Corduroy

- Additional conduits easily incorporated
- Can be built more than one log high
 - Additional stability and bearing
 - Additional water passage capabilities

Log bundle

 Logs placed in a trench act as a conduit

 Two rows high provides greater flow capacity through lineal voids

Separation layer

 Number and spacing considerations to match wetland flow characteristics

Permeable fill

- Permeable road base can be built to allow for water passage
- Angularity of aggregate is key to provide a stable interlocked base
- Need to manage the fines within the base and from above
- Water passing capabilities along entire length of structure

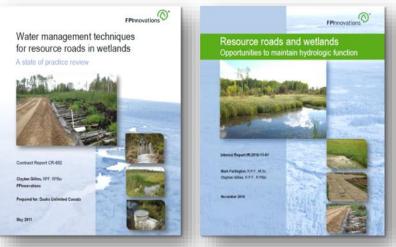
Raised access

- Designs have been developed and used to build raised access structures, and raised drill platforms and their associated access roads.
- Surface flow able to pass below structure between piers

Photo courtesy of Canadian Mat Systems and Composite Advantage

Education- field workshops

- Provide training and learning opportunities for forest workers
- Better understanding of wetland types
- Exposure to practical water management solutions and construction techniques
- Interaction amongst participants



Education- resources

- Use of guides and design / schematics aid in the use and construction of appropriate water management options for wetlands
- Continued development of guides to be used as SOP's

Education- continued efforts

- FPInnovations has ongoing research in the field of wetland crossings
- Partnerships help to further the knowledge and resources available
- FPInnovations has an MOU with Ducks Unlimited Canada
- Forest industry in Canada will benefit from such cooperative efforts

Clayton Gillies, RPF, RPBio clayton.gillies@fpinnovations.ca

http://wetlands.fpinnovations.ca

Follow us on

www.fpinnovations.ca