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Abstract

Context To detect an effect of landscape context on a

species’ response, the landscape variables need to be

measured within the appropriate distance from the

species’ response, i.e. at the scale of effect. However, it

is not clear what factors determine the scale of effect.

Objective Our objective was to test the prediction

that the scale of effect should be smallest when the

species’ response is fecundity, larger for abundance,

and larger still for occurrence.

Methods We compared the scale of effect of two

landscape variables (road density, forest proportion)

on the three responses (fecundity, abundance,

occurrence) for the wood frog (Lithobates sylvaticus)

in eastern Ontario, Canada. We used egg mass surveys

of 34 ponds to estimate fecundity (mean eggs/mass),

abundance (number of masses), and occurrence

(presence/absence of egg masses). We then empiri-

cally estimated the scale of effect of each landscape

variable on each response.

Results The scale of effect differed among

responses, from 0.2 to 3.0 km radii; however, it did

not vary in the predicted order. Furthermore, the order

was not consistent between the two landscape

variables.

Conclusions Our results show that the scale of effect

of a landscape variable on a given species can differ

for different response variables. However, they also

suggest that these differences in the scale of effect are

not predictable. Thus, the most reliable way to ensure a

landscape context study is conducted at the correct

spatial extent is to estimate the scale of effect

empirically, rather than ‘guesstimating’ the extent a

priori.
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Introduction

Landscape context, i.e. the amount and spatial pattern

of land cover types surrounding a given site, can have

important effects on a species’ response (e.g. abun-

dance, occurrence) at that site (Thornton et al. 2011).

For example, the abundance and occurrence of

anurans (frogs and toads) in ponds is influenced by

the amount of forest, the density of roads, the mean

size of crop fields, and the proportion of different crop

types in the landscapes surrounding the ponds (Ei-

genbrod et al. 2008; Koumaris and Fahrig 2016;

Collins and Fahrig 2017). The abundances and occur-

rences of birds and bats are influenced by the amount

and fragmentation of forest in landscapes surrounding

forest sites (Smith et al. 2011; Ethier and Fahrig 2011).

In urban environments, the abundances and occur-

rences of birds, lichens, and bats are influenced by the

amount of green space in the landscapes surrounding

sample sites (Coffey and Fahrig 2012; Smith et al.

2014; Moretto 2018).

Our ability to detect and estimate these landscape

context effects depends on measuring the landscape

variables (e.g. forest amount, road density) at the

‘right’ spatial extent around the sample sites. The

spatial extent, or range of extents, within which a

landscape variable has its strongest effect(s) on a

particular species’ response has been called the scale

of effect of that variable on that species (Jackson and

Fahrig 2012). The scale of effect varies widely across

species, from 0.01 to 100 km (Jackson and Fahrig

2015). Estimates of the scale of effect can also vary

widely for a given species. For example, Moretto

(2018) found a very small scale of effect (about 0.2 km

radius) of tree cover on bat abundance in an urban

setting, while Ethier and Fahrig (2011) found the scale

of effect was much larger, between 1 and 5 km radius

around sample sites, for the same bat species in a rural

setting. The scale of effect of the landscape on a given

species can also vary with the landscape variable

measured. For example, striped skunk occurrence at a

site is related most strongly to forest cover within

0.45 km, but to wetland cover, crop cover, and edge

density within C 3.45 km (Martin and Fahrig 2012).

Measuring landscape context effects within the

appropriate spatial extent, i.e. at the scale of effect, is

important not only for correctly identifying landscape

context effects on particular species but also for testing

ecological hypotheses. For example, Holland et al.

(2005a) found strong support for a predicted negative

relationship between beetle species’ reproductive

rates and extinction thresholds (minimum habitat

amount needed for species occurrence) when the

extinction threshold for each species was estimated at

its scale of effect. Scale of effect varied from 0.02 to

1.6 km (radius) across species. In contrast, when a

common landscape size (1 km radius) was used to

estimate the extinction thresholds for all species,

Holland et al. (2005a) found no relationship between

species’ reproductive rates and extinction thresholds.

Thus, estimating landscape context effects at the

appropriate spatial extent can be critical for making

reliable inferences about ecological relationships.

Despite the importance of measuring landscape

variables at the scale of effect, most studies have used a

single spatial extent for studying landscape context

effects, where the spatial extent chosen is either

arbitrary or loosely based on information about the

home range size or the dispersal distance of the

organism. Even in studies that estimate landscape

context effects at multiple spatial extents, only 29%

used a biological rationale (home range size or

dispersal distance) to select the range of spatial extents

evaluated (Jackson and Fahrig 2015). It therefore

seems likely that landscape context effects are often

under-estimated or mis-identified due to inappropriate

selection of the landscape extent within which a

landscape variable is measured.

This leads to the question: can we do a better job

selecting the landscape extent, or the range of

landscape extents, in studies of landscape context

effects? As already mentioned, studies that provide a

biologically-based rationale for the selected landscape

extent generally use a rationale based on the move-

ment ecology of the species (Jackson and Fahrig

2015). This choice has some support in the literature.

A simulation study (Jackson and Fahrig 2012) pre-

dicted that the scale of effect of habitat amount on

abundance is * 4–9 times the median dispersal

distance or * 0.3–0.5 times the maximum dispersal

distance of a species. In addition, empirical studies

have found that the scale of effect was larger for larger

wood-boring beetle species (Holland et al. 2005b) and

for larger bird species (Thornton and Fletcher 2014)

relative to smaller species, possibly because larger

species have larger movement ranges. On the other

hand, in a review of multi-scale empirical studies,

Jackson and Fahrig (2015) did not find a relationship
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between the scale of effect and species movement

range.

This lack of strong support for a predictive

relationship between a species’ movement range and

its scale of effect could be due to a variety of other

factors that might influence the scale of effect, thus

muddying the relationship between movement range

and the scale of effect (Miguet et al. 2016). As

mentioned above, the scale of effect appears to depend

on the particular context of the study (e.g. urban vs.

rural) and the particular landscape variable measured

(e.g. wetland vs. forest cover). Miguet et al. (2016)

also hypothesized that the scale of effect could be

influenced by species interactions. For example, the

scale of effect of the landscape context on a prey

species may be determined or affected by the scale of

effect of the landscape context on its predators. And,

they hypothesized that the scale of effect might be

larger for species with lower reproductive rates. If all

of these factors are simultaneously in play, this might

explain the generally weak relationship between the

scale of effect and movement range found by Jackson

and Fahrig (2015).

In addition to the factors mentioned above, Miguet

et al. (2016) also hypothesized that the scale of effect

of a landscape variable on a species should depend on

the temporal scale over which the landscape context

effect occurs, and that this should depend on the

particular species’ response variable measured. This

idea was supported in a simulation study in which, for

a given species, the scale of effect of habitat amount on

population abundance was much smaller than the

scale of effect of habitat amount on occurrence, which

was in turn much smaller than the scale of effect of

habitat amount on genetic diversity (Jackson and

Fahrig 2014). Following the logic from the simula-

tions, Miguet et al. (2016) hypothesized that the scale

of effect on fecundity should be even smaller than the

scale of effect on abundance. The argument is that

fecundity is mainly affected by within-territory

resource acquisition during a single season; thus,

fecundity should be most strongly affected by the

landscape context within the species’ foraging range.

Abundance is affected not only by conditions within

the foraging range that influence reproduction and

mortality, but also by immigration and emigration.

Thus, abundance should be affected by the landscape

context at a larger spatial extent than fecundity, i.e. an

extent that encompasses the dispersal distance of the

species. Occurrence, which depends on extinction-

colonization dynamics over a number of generations,

should be influenced by the landscape over an even

larger spatial extent that encompasses the landscape

context experienced by multiple generations of dis-

persers. Finally, genetic diversity plays out over even

more generations and therefore over an even larger

distance. Martin (2018) reviewed support for the

prediction that the scale of effect for a given species (or

species group) increases in the order: fecun-

dity\ abundance\ occurrence\ genetic diversity.

In most cases (70%) the scale of effect was different

for different response variables, but overall the

difference was not consistently in the predicted

direction. Martin (2018) suggested that the lack of

support for the prediction may be due to inaccurate

estimation of the scale of effect of the landscape

variable on a species’ response, because the range of

scales included in most studies was too small to

encompass the true scale of effect for each response.

In this study we used estimates of wood frog

(Lithobates sylvaticus) fecundity, abundance, and

occurrence in ponds to test the prediction that the

scale of effect of the landscape context on fecundity

should be smaller than the scale of effect on abun-

dance, which in turn should be smaller than the scale

of effect on occurrence. We included two landscape

variables—road density (km/km2) and the proportion

of the landscape in forest (‘forest proportion’)—to

evaluate whether the predicted order of the scale of

effect (fecundity\ abundance\ occurrence) is con-

sistent across different landscape variables. The wood

frog is an ideal test species for this prediction because

it is relatively abundant in eastern Ontario, its egg

masses are relatively easy to identify and count, and its

populations are known to respond negatively to road

density and positively to forest proportion in the

surrounding landscape (Findlay et al. 2001; Eigenbrod

et al. 2009). For each of the three response variables

(fecundity, abundance, and occurrence) and each of

the two predictor variables (road density and forest

proportion) we estimated the scale of effect using a

multi-scale focal sample site study design (Brennan

et al. 2002). This involves: (1) measuring the species’

responses (here, fecundity, abundance, and occur-

rence) at a set of sample sites (here, ponds) that vary in

the landscape variables of interest (here, road density

and forest proportion) in the surrounding landscapes

(Fig. 1a); (2) measuring the landscape variables
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within multiple spatial extents centered on each

sample site (Fig. 1a); (3) estimating the strength of

relationship between the species’ response and land-

scape variable within each spatial extent (Fig. 1b); and

(4) comparing the strength of relationship across

spatial extents and selecting the spatial extent within

which the relationship is strongest (Fig. 1c).

Methods

Site selection and landscape variables

We selected 34 ponds to represent the range of

variability in road density within eastern Ontario

(0.13–6.54 km/km2; Fig. 2). For pond selection, road

density was estimated within 1 km of the center of

each pond. We limited our initial selection of ponds to

those having a road within 0.5 km and forest near the

pond, to allow access to the pond for sampling and to

maximize the probability of wood frog occurrence,

respectively. We note that, although landscapes were

not explicitly selected to minimize the correlation

between our two landscape variables, the |Pearson

correlation| was B 0.26 within all spatial extents. The

pond data and forest data were provided by the Ontario

Ministry of Natural Resources and Forestry (https://

www.ontario.ca/page/land-information-ontario; con-

tains information licensed under the Open Govern-

ment Licence—Ontario). The road data were from

Statistics Canada (2011 Census; https://www12.

statcan.gc.ca/census-recensement/2011/geo/RNF-FRR/

index-eng.cfm).

To test our prediction, we needed to measure each

landscape variable—road density and forest propor-

tion—within multiple extents, over a wide enough

range to encompass the scale of effect for all

responses, and with short enough distances between

tested spatial extents to pinpoint the scale of effect.

Thus, we chose to measure road density and forest

proportion within each of 30 nested extents from 0.1 to

3.0 km radii (areas of 0.03–28.3 km2), in 0.1 km

Fig. 1 Example showing how to empirically estimate the scale

of effect using a multi-scale focal sample site study design.

a Measure a species’ response (e.g. abundance) at a set of

sample sites that vary in the landscape variable of interest (e.g.

forest proportion) in the surrounding landscapes. Measure the

landscape variable within multiple spatial extents centered on

each sample site. b Estimate the strength of relationship (e.g.

Akaike Information Criterion; AIC) between the response and

the landscape variable for each spatial extent. c Compare the

strength of relationship across spatial extents and select the

spatial extent, or range of extents, within which the relationship

is strongest (e.g. the extent with the smallest AIC)

123

706 Landscape Ecol (2019) 34:703–715

https://www.ontario.ca/page/land-information-ontario
https://www.ontario.ca/page/land-information-ontario
https://www12.statcan.gc.ca/census-recensement/2011/geo/RNF-FRR/index-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2011/geo/RNF-FRR/index-eng.cfm
https://www12.statcan.gc.ca/census-recensement/2011/geo/RNF-FRR/index-eng.cfm


increments. We chose a minimum spatial extent that

was within the range of home range sizes identified by

Blomquist and Hunter (2010) and Groff et al. (2017).

We chose a maximum extent to ensure that we

included extents well beyond the dispersal range of the

wood frog. Estimates of mean dispersal distances for

the wood frog range from approximately 0.5 km

(Groff et al. 2017) to 1 km (Berven and Grudzien

1990), which suggests that our maximum extent is

likely 3–6 times the mean wood frog dispersal

distance.

Wood frog fecundity, abundance, and occurrence

We surveyed for egg masses two times at each pond,

once between April 12 and April 29, 2016 and again

between April 29 and May 17, 2016. The wood frog

begins breeding during a period of warmth after a

heavy rain, sometime between late winter (in February

or March) and early spring (in April or May; Berven

1982, 1990; Browne et al. 2009). We surveyed three

ponds per day, for 20 min to 2 h per survey depending

on pond size and the number of egg masses present.

All surveys were conducted between 0900 and 1800 h.

We searched the ponds for egg masses by looking

through the water’s surface using polarized sun-

glasses. We started from the southern corner of the

pond and walked towards the northern corner of the

pond moving back and forth across the pond until the

entire pond had been surveyed. We used a double

observer method to allow for estimates of detectability

across observers (Grant et al. 2005). The pond was

divided in half and Observer 1 surveyed the first half

for egg masses while Observer 2 recorded the masses

found by Observer 1 and noted any masses missed by

Observer 1. The observers then switched roles for the

second half of the pond. Detectability was estimated

for each observer in each survey as

1� nunobserved= nobserved þ nunobservedð Þð Þð Þ � 100%

Fig. 2 Map of the study

area in eastern Ontario,

showing sampled ponds

(black dots) with 3 km

buffers surrounding the

sampled ponds. Three km

was the maximum spatial

extent used for landscape

variables in this study
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where nunobserved = the number of egg masses not

discovered by the primary observer (i.e. Observer 1 in

the first half or Observer 2 in the second half of the

pond), and nobserved = the number of egg masses

discovered by the primary observer (Grant et al.

2005). We then estimated the detectability for each

observer across all the pond surveys in which the

observer participated. Detectability was highly con-

sistent across observers (see Results).

When an egg mass was found by the primary

observer, the egg mass was gently lifted from the water

and placed in an Ovagram (Karraker 2007; Fig. 3),

which consisted of a flat-bottom plastic basin that

contained the mass, and a flat-bottom glass basin which

was used to gently compress the egg mass from above

until individual eggs were distinguishable. A pho-

tograph was then taken of the compressed egg mass,

using an Olympus Stylus TG-4 camera. The number of

eggs per mass was estimated from the photo in ImageJ

(Schindelin et al. 2015; Moraga and Pervin 2018), using

the ‘‘Multi-point’’ feature to manually place a point on

each egg in the photo. The software then tabulated the

number of points present in the photo.

Wood frog fecundity, abundance, and occurrence

were estimated from the egg mass surveys for each

pond. To avoid non-independence of observations, we

used the egg mass survey data from the survey with the

most masses to estimate fecundity and abundance.

This is because we could not know whether or not an

egg mass present during the second survey was

counted during the first survey. Fecundity was the

mean number of eggs per egg mass from the survey.

Abundance was indexed as the number of egg masses

(Crouch and Paton 2000; Grant et al. 2005; Raithel

et al. 2011). Occurrence was the presence/absence of

egg masses, where the wood frog was considered

‘present’ if we found at least one egg mass in at least

one of the surveys of the pond.

Potentially confounding variables

We measured nine additional variables that may

influence wood frog fecundity, abundance, or occur-

rence at each sample pond. We intended to include

variables that were correlated with our species’

response variables in the statistical models used to

select the scale of effect (see Statistical analysis,

below). This was to avoid erroneously selecting a

scale of effect where the apparent landscape context

effect is not actually due to the landscape variable but

rather to the effect of another important variable that

happens to be strongly correlated with the landscape

variable within that particular extent.

The first potentially confounding variable we

measured was the Julian date of sampling. The

remaining eight variables indexed different aspects

of the local habitat quality at the sampled pond:

dissolved oxygen, electrical conductivity, tempera-

ture, pH, vegetative cover (emergent plus submerged),

pond depth, pond perimeter, and pond area. Each of

the local habitat variables was measured once per

survey. Water quality can influence the survival of

developing embryonic and larval wood frog (Babbitt

et al. 2006). Attachment sites for egg masses are found

in submerged and emergent vegetation, with egg

masses unlikely to be found in ponds with no such

vegetation (Grant et al. 2005). Pond size, perimeter,

and depth can influence wood frog survival (Rowe and

Dunson 1995), for example, because larger ponds are

more likely to support predatory fish than smaller

ponds (Raithel et al. 2011). We measured dissolved

oxygen (mg/L) using a LAQUA D-75 probe at

approximately 15 cm below the water surface and

1–2 m from the pond edge. Electrical conductivity

(lS), temperature (�C), and pH were measured with a

Hannah Instruments probe at approximately 5 cm

below the water surface and 1–2 m from the pond

edge. We visually classified the vegetative cover

Fig. 3 Photograph of a wood frog (Lithobates sylvaticus) egg

mass in an Ovagram, which consisted of a flat-bottom plastic

basin that contained the mass, and a second flat-bottom glass

basin used to gently compress the egg mass from above until

individual eggs were distinguishable
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(emergent plus submerged) in each pond on a five-

point scale—0 = 0%, 1 = 1–10%, 2 = 11–25%,

3 = 26–50%, 4 = 51–75%, or 5 = C 76%—as per

Grant et al. (2005). We measured pond depth (cm)

using a meter stick placed in the deepest area of the

pond. To estimate pond area and perimeter we walked

the entire perimeter of each pond and saved the walked

route on a Garmin GPSMAP 64st, and later calculated

area and perimeter in ArcMap (ESRI). Note that we

did not include observer identity as a potential

confounding variable because our detectability anal-

ysis indicated very high consistency in detectability

across observers (see Results), and any variation due

to observer identity was further minimized by the fact

that each pond was simultaneously surveyed by two

observers.

Statistical analysis

The number of sites included in our analyses varied

based on the response. Occurrence (presence-absence

of egg masses) was measured at all 34 ponds.

Abundance (number of egg masses) was measured at

the 21 ponds where egg masses were found. For

fecundity, we could not measure the number of eggs

per mass if individuals had begun emerging by the

time the mass was found, because the number of

missing individuals was unknown. Thus, fecundity

was only estimated at the 17 ponds where at least one

intact egg mass was found.

We estimated the scale of effect six times, once for

each combination of the species’ response (fecundity,

abundance, occurrence) and landscape variable (road

density, forest proportion). To estimate the scale of

effect for each combination, we modeled the relation-

ship between the response and one landscape variable

within each of the 30 spatial extents (i.e. road density

within 0.1 km, road density within 0.2 km, etc.). Thus,

the scale of effect of road density on a species’

response was estimated independently of the scale of

effect of forest proportion. We used general linear

models to estimate the effect of each of the two

landscape variables on fecundity, generalized linear

models with a negative binomial distribution and log

link to estimate the effects of the landscape variables

on abundance, and generalized linear models with a

binomial distribution and logit link to estimate the

effects of the landscape variables on occurrence. We

then estimated the scale of effect for each predictor-

response combination as the spatial extent with the

smallest AIC. We note that we did not model non-

linear relationships between the response and land-

scape variable when selecting the scale of effect

because visual examination of the raw data did not

suggest the relationships were non-linear.

We tested for positive spatial autocorrelation in the

residuals for each response-predictor combination at

each spatial extent, i.e. whether similarity in residual

values declined with distance between the sampling

sites. To do so we used a one-tailed Global Moran’s I,

with a permutation approach (1000 permutations) to

calculate the significance level. Residuals were con-

sidered spatially autocorrelated at p\ 0.05.

To determine if the potential confounding variables

affected our selection of the scale of effect, we repeated

the above analysis, with the exception that here we

modeled the relationship between the response and

landscape variable within each spatial extent while

controlling for the potentially confounding variable that

was most strongly related to that response. We included

only the single most important potentially confounding

variable in each case, rather than multiple variables,

because of our limited sample size (17–34 landscapes per

analysis). For fecundity and abundance, we identified the

most important potentially confounding variable based

on Pearson correlations between the response and each

of the potentially confounding variables. For occurrence,

we used Nagelkerke’s R2 from a logistic regression of

the relationship between egg mass presence-absence and

each potentially confounding variable.

We used bootstrapping to estimate the uncertainty

around the selected scale of effect. For each predictor-

response combination we randomly re-sampled the

data from n ponds, with replacement, from the set of

n surveyed ponds, 1000 times, where n = 17, 21, and

34 for analyses of fecundity, abundance, and occur-

rence, respectively (see above). We then estimated the

scale of effect for each resampled data set, as described

above. Finally, we summed the total number of times

(out of 1000) that each spatial extent was selected as

the scale of effect.

All analyses were conducted in R (R Core Team

2018), using the ‘MASS’ package for generalized

linear models with a negative binomial distribution

(Venables and Ripley 2002), the ‘ape’ package for

Global Moran’s I tests (Paradis and Schliep 2019), and

the ‘fmsb’ package to calculate Nagelkerke’s R2

(Nakazawa 2018).
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Results

We observed the wood frog at 21 of the 34 sampled

ponds. We found between 1 and 401 wood frog egg

masses per occupied pond. Mean fecundity ranged

from 266 to 1220 eggs per mass. Detectability of egg

masses ranged from 95 to 100% across observers.

The estimated scale of effect did not vary in the

order we predicted (i.e. fecundity\ abundance\ oc-

currence). The scale of effect of road density was

smallest for abundance (0.4 km), intermediate for

occurrence (0.7 km), and largest for fecundity

(2.1 km; Fig. 4). The scale of effect of forest propor-

tion was smallest for fecundity (0.2 km), intermediate
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Fig. 4 Comparison of the model support for the effect of each

landscape variable (road density, forest proportion) on each

species’ response (fecundity, abundance, occurrence), at each of

30 spatial extents. We used general linear models to estimate the

effect of each of the two landscape variables on fecundity,

generalized linear models with a negative binomial distribution

and log link to estimate the effects of the landscape variables on

abundance, and generalized linear models with a binomial

distribution and logit link to estimate the effects of the landscape

variables on occurrence. The estimated scale of effect (arrow) is

the spatial extent with the smallest AIC. Grey shading is used to

identify all spatial extents with substantial support, i.e.

DAIC B 2
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for occurrence (0.4 km), and largest for abundance

(3.0 km; Fig. 4). All Global Moran’s I tests for

positive spatial autocorrelation of model residuals

were non-significant (Online Resource 1).

Our conclusions did not depend on whether we

controlled for potentially confounding variables. The

scale of effect was the same when we did and did not

control for the most influential potentially

confounding variable for five of the six predictor-

response combinations (Online Resource 2). The only

exception was that the estimated scale of effect of

forest proportion on abundance was much smaller (0.1

vs. 3.0 km) when we included the most influential

potentially confounding variable (vegetative cover;

Online Resource 2). However, the order of the scale of

effect also did not vary as predicted in this analysis.
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Fig. 5 Uncertainty around the estimated scale of effect,

estimated by bootstrapping. For each predictor-response com-

bination we randomly re-sampled the data from n ponds, with

replacement, from the set of n surveyed ponds, 1000 times,

where n = 17, 21, and 34 for analyses of fecundity, abundance,

and occurrence, respectively. We then estimated the scale of

effect for each resampled data set. Plotted is the total number of

times (out of 1000) that each spatial extent was selected as the

scale of effect. The estimated scale of effect (arrow) is the spatial

extent with the smallest AIC for the complete data set (see

Fig. 4)
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The scale of effect of forest proportion was smallest for

abundance, intermediate for fecundity, and largest for

occurrence (Online Resource 2).

Our bootstrapping analysis suggested substantial

uncertainty in the selected scale of effect for most of

our predictor-response combinations (Fig. 5). For

example, although the best road density-fecundity

model occurred within the 2.1 km extent, the selected

scale of effect ranged from 0.1 to 3.0 km for the 1000

bootstrapped analyses for this predictor-response

combination (Fig. 5a). Moreover, in one case, the

most frequently selected scale of effect based on the

bootstrapped analysis was different from the scale of

effect that was selected based on the lowest AIC

(Fig. 5e).

While our results did not support our prediction,

and the estimated scale of effect was often very

uncertain, the predictor-response relationships at their

estimated scale of effect did conform to our expecta-

tions for abundance and occurrence. Specifically, we

found significantly lower abundance and probability

of occurrence in landscapes with greater road density

than in landscapes with lower road density (abun-

dance: Nagelkerke’s R2 = 0.32, p = 0.002; occur-

rence: Nagelkerke’s R2 = 0.22, p = 0.04). We also

found (significantly) greater abundance and (non-

significantly) higher probability of occurrence in

landscapes with more forest than in landscapes with

less forest (abundance: Nagelkerke’s R2 = 0.47,

p = 0.002; occurrence: Nagelkerke’s R2 = 0.12,

p = 0.10). However, we found the opposite relation-

ships between fecundity and our landscape variables,

i.e. significantly higher fecundity in landscapes with

greater road density (R2 = 0.28, p = 0.03) and lower

fecundity in landscapes with more forest (R2 = 0.53,

p = 0.001).

Discussion

Our results do not support the predicted order of the

scale of effect—fecundity\ abundance\ occur-

rence—for either landscape variable. Instead, for road

density the order of the scale of effect was abun-

dance\ occurrence\ fecundity, and for forest pro-

portion the order was fecundity\ occurrence\
abundance. This result is consistent with results from

a review of multi-scale studies (Martin 2018) which

found that, while the scale of effect does vary with the

response variable, it does not vary in a

predictable order.

Martin (2018) speculated that failure to support the

prediction might be due to inadequacies in study

design in the majority of studies reviewed; studies

with stronger designs were more likely to be consistent

with the prediction (i.e. the scale of effect increases in

the order: fecundity\ abundance\ occurrence).

However, study design issues cannot explain why we

found no support for the prediction here. In particular,

Martin (2018) suggested that in most studies the range

of extents analyzed—smallest to largest—was too

narrow, and the distance between tested extents was

too wide to accurately estimate the scale of effect. Our

study design explicitly avoided these problems. We

measured spatial extents from 0.1 to 3.0 km and used a

fine resolution of extents in 0.1 km increments to

accurately estimate the scale of effect. Moreover, only

one of the six predictor-response relationships we

tested was strongest at the smallest or largest tested

extent. Thus it is likely that the true scale of effect was

between the smallest and largest extents measured for

at least five of the predictor-response relationships.

Our predicted order of the scale of effect (Miguet

et al. 2016) was based on simulations (Jackson and

Fahrig 2014), and on the well-established linkage

between temporal and spatial scaling in ecology

(Levin 1992). That we did not find support for our

prediction might suggest that we incorrectly inferred

the temporal scale (and therefore the spatial scale) of

landscape context effects on the responses. This could

occur if feedbacks between responses influence the

manifested scale of effect. For example, the fact that

fecundity was positively related to road density and

negatively related to forest proportion—in contrast to

the negative effect of road density on abundance and

the positive effect of forest proportion on abun-

dance—could indicate a negative density-dependent

effect of abundance on fecundity. This would obscure

the expected difference between the two in their

temporal scales of regulation. A negative density-

dependent effect of abundance on fecundity is sup-

ported by an experimental study examining wood frog

populations, which found that higher densities lead to

delayed onset of sexual maturity and smaller individ-

ual egg masses (Harper and Semlitsch 2007). How-

ever, this explanation seems unlikely. If the effects of

the landscape variables on fecundity are indirect

effects through their effects on population density,
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then we should have seen the same scale of effect of

these landscape variables for both abundance and

fecundity. We did not see this.

A second possible reason for finding results that do

not support the predicted order of scale of effect relates

to low variation in the strength of some predictor-

response relationships across spatial extents. For

example, there was only DAIC = 2.36 between the

most and least supported models relating occurrence

to forest proportion (Fig. 4f). This suggests a similar

level of statistical support across extents, either

because the landscape variable is a poor predictor of

the species’ response or the response is not scale-

dependent (Martin and Fahrig 2012). This would

insert a strong element of uncertainty in the estimated

scale of effect. However, we argue this explanation is

unlikely. The fact that there is a range of similarly-

supported spatial extents (i.e. extents with DAIC B 2)

does not affect our conclusion. For road density, it is

clear that our prediction is also not supported if we

compare the ranges of similarly-supported spatial

extents across the species’ responses; i.e. all supported

extents for fecundity are much larger than for occur-

rence (Fig. 4a, c). Bootstrap estimates of uncertainty

also suggest this explanation is unlikely. In particular,

bootstrapping revealed that the estimated scale of

effect of forest proportion on abundance is highly

uncertain, showing a bimodal distribution (Fig. 5e). If

we assume the smaller scale is accurate, this would

place the scale of effect in our predicted order

(fecundity\ abundance\ occurrence). However,

the differences in estimated scales would then be very

small (0.2, 0.3, and 0.4 km respectively), each with

high local uncertainty (Fig. 5d–f). Thus, low variation

in the strength of the predictor-response relationship

across scales does not appear to explain our lack of

support for the predicted order of the scale of effect.

Although the order of the scale of effect was not

consistent with our predicted order, the scale of effect

did vary substantially depending on the response

variable measured, and the order differed between the

two landscape variables. Previous studies have also

found differences in scale of effect for amphibian

species depending on the response variable measured.

For example, a study of urbanization effects on the

spotted salamander (Ambystoma maculatum) found

that species occurrence was best predicted with a

model that contained road length measured within

1 km, whereas population abundance was best

predicted with a model that contained road length

measured within 0.3 km (Clark et al. 2008). A study of

forest effects on the European common frog (Rana

temporaria), found species occurrence was most

strongly affected by forest proportion within 0.4 km,

while population abundance was most strongly

affected by forest proportion within 1 km (Boissinot

et al. 2015). Our finding of a different scale of effect

for different responses in the wood frog is further

supported by comparing different wood frog studies

that used different response variables. These studies

found the scale of effect of road density (Homan et al.

2004; Veysey et al. 2011) and forest proportion (Porej

et al. 2004; Herrmann et al. 2005; Clark et al. 2008) on

either wood frog abundance or occurrence were within

extents ranging from 0.2 to 2 km, highlighting the

response-specific nature of landscape context effects.

It remains possible that the order of the scale of

effect is consistent between species, for a given

landscape variable, particularly for organisms that

share similar dispersal patterns and life histories. In

fact, two other multi-scale studies have estimated the

same order of the scale of effect of road density and

forest proportion on amphibian abundance and occur-

rence as we did. Clark et al. (2008) found that the scale

of effect of road density was greater on occurrence than

abundance (for A. maculatum) and Boissinot et al.

(2015) found that the scale of effect of forest

proportion was greater on abundance than occurrence

(for R. temporaria).

Implications

Our results indicate three findings that together have

important implications for research. First, as in

previous meta-analyses of the scale of effect (Jackson

and Fahrig 2015; Martin 2018), relationships between

a species’ response and landscape variable are typi-

cally strongest at a specific spatial extent (or range of

spatial extents), i.e. they exhibit a scale of effect.

Second, for a single species, the scale of effect of a

given landscape variable varies with the response

variable. This is consistent with the findings of Martin

(2018) who found that the scale of effect of a given

landscape variable differed between response vari-

ables 70% of the time. Third, the order of the scale of

effect is not consistent with a priori predictions and is

not consistent across landscape variables. In other

words, although the scale of measurement of a
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landscape variable strongly influences its estimated

relationship with a species’ response, predicting the

appropriate scale of measurement a priori is likely

impossible in the absence of previous multi-scale

studies of the particular species’ response-landscape

variable relationship of interest. In the absence of such

pre-existing evidence, we recommend that a single

scale should not be chosen for estimating landscape

context effects on species but rather one should

empirically estimate the scale of effect using a multi-

scale study design.
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