

### **About InnoTech Alberta**

InnoTech Alberta is a leading Research and Technology
Organization (RTO) established by the Government of Alberta
to serve the needs of industry, innovation ecosystem &
academia









1921

**Government Lab** 

Natural Resource Development Focus

Strategic Research, Technical Services & Technology Development 2010

**Government Lab** 

Industry Sector and SME Support Focus

Basic Research, Applied Research & Commercialization (Funder & Execution) 2016

Research & Technology Organization

Stakeholder & Industry Sector Focus

Industrial Technology Research, Development & Deployment

### InnoTech Alberta's Mandate

- Demonstrate Value to our Clients and Industries by contributing to research, technology development, and innovation for market sustainment, growth, and new disruptive offerings
- Demonstrate **Return on Investment** to the citizens of Alberta as an integral contributor to our stakeholder Alberta Innovates across the Path of Innovation
- Uniquely positioned to provide services where others lack our:
  - > Capability and Capacity expertise, facilities, scale
  - Risk Tolerance high risk industrial R&I initiatives
  - > Neutrality impartial, independent, global recognition







### What are Soil Sterilants?

- Non-selective, persistent, residual herbicides that render treated soil unfit for plant growth
  - Selective vs non-selective
    - Selective herbicides control specific types of vegetation
    - Non-selective herbicides used for total vegetation control
  - Residual vs Non-Residual can be selective or nonselective
    - Residual herbicides control vegetation long term
    - Non-residual herbicides generally only last one growing season
  - Persistent
    - Continued or prolonged existence of herbicide
    - Related to half life which depends on:
      - Application rate, soil moisture, pH, temperature, OM content, microbial content, etc.
      - Chemical and physical properties, composition, etc.









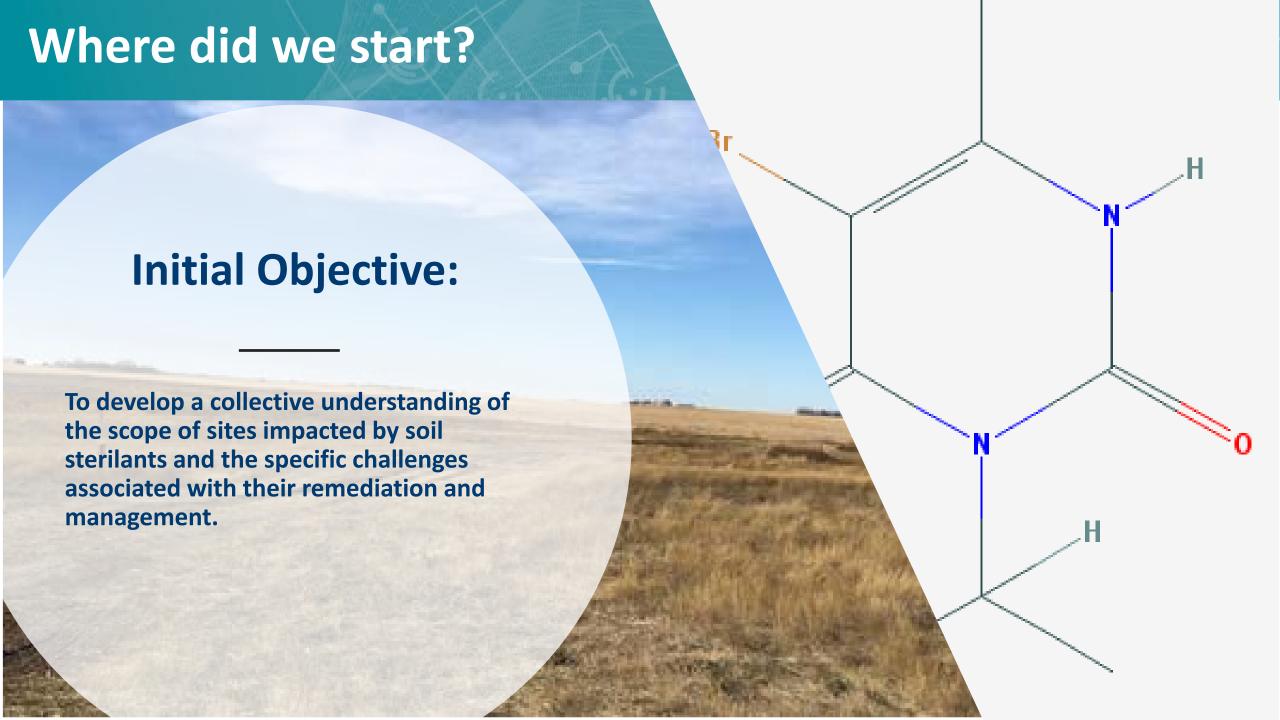


Sterilants – What is the Problem?

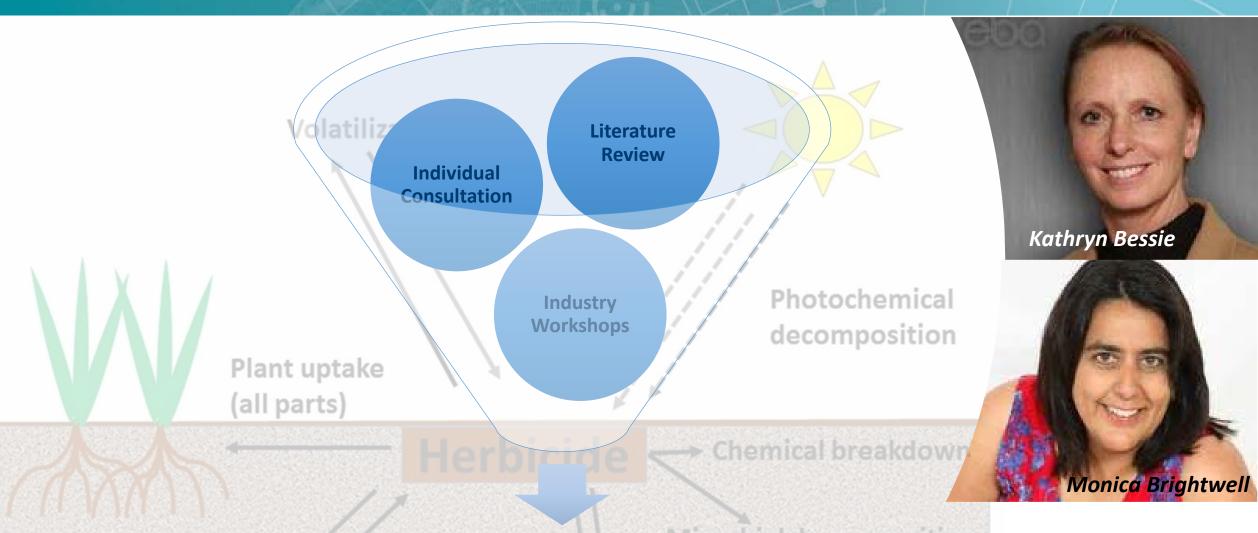
- Non-selective, persistent, and residual
- Typically applied at high application rates over several years
- Generally older sites farms, transmission lines, oil and gas distribution and industrial facilities, pipelines and electric metering stations, railways
- Often become contamination source through leaching, runoff or wind dispersion
- Best estimate >60,000 sites in Alberta






# Sterilants – What is the Problem?




- Remediation stalled due to challenging nature of contaminants and cost associated with conventional remediation approaches
  - Difficult to treat to guideline level
  - Widespread given length of migration time
  - No single, standardized solution due to differences in chemical structure and environmental behavior of products
  - Often confounding contaminant issues

Considerable effort over past 20 years, however knowledge gaps remain





## Where did we start?



Outcome Orientated

Adsorption by so Conceptual Program Model
Organic matter & clay



# **Sterilants – Opportunity?**

Increased emphasis on reducing liabilities



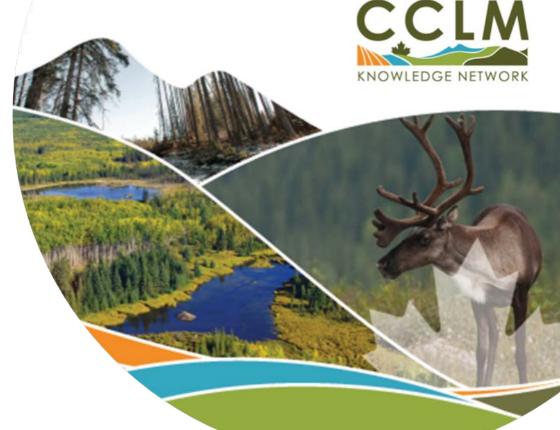
Ageing sites nearing their end of life



## **Opportunity** to:

- Synthesize past learnings, and
- Partner to develop strategies and methods to effectively manage sterilant impacted sites




# **Synthesize Learnings**

What can we help you find?

Q

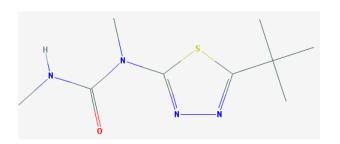
- Literature review and workshop summary provide an overview of:
  - physical and chemical properties,
  - persistence and fate in the environment,
  - ecotoxicological information,
  - regulatory guidelines,
  - applicable remediation technologies, and
  - operational challenges

associated with the 6 sterilants commonly screened for in Alberta



Drozdowski, B., C.B. Powter, S. Levy, 2018. Management of Sterilant Impacted Sites: Literature Synthesis. InnoTech Alberta, Edmonton, Alberta. 49 pp.

Drozdowski, B., S. Levy and C.B. Powter, 2018. Remediating Soil Sterilant-Affected Lands: Summary of Stakeholder Discussions. InnoTech Alberta, Edmonton, Alberta. 42 pp.


### What did we learn?

- Majority of sterilant impacts in Alberta are associated with bromacil and tebuthiuron
- Sites are primarily located in central and southern Alberta
- Alberta Tier 1 Soil and Groundwater Remediation Guidelines (AEP 2016) are conservative and based on data generated outside Alberta
- Lack of available information for use in risk assessment models.
- Remediation technologies have been successfully utilized to reduce or eliminate sterilant impacts – more research required for Alberta conditions and at larger scale

|             | Lab 1 <sup>±</sup>                         |                                  |                                | Lab 2 <sup>‡</sup>            |                                  |                                |
|-------------|--------------------------------------------|----------------------------------|--------------------------------|-------------------------------|----------------------------------|--------------------------------|
| Sterilant   | Detection<br>Limit<br>(mg/kg) <sup>±</sup> | # Samples<br>Analyzed in<br>2017 | # of<br>Exceedances<br>in 2017 | Detection<br>Limit<br>(mg/kg) | # Samples<br>Analyzed in<br>2017 | # of<br>Exceedances<br>in 2017 |
| Bromacil    | 0.008                                      | 552                              | 102                            | 0.009                         | 508                              | 119                            |
| Tebuthiuron | 0.005                                      | 400                              | 38                             | 0.001                         | 508                              | 9                              |
| Atrazine    | 0.005                                      | 400                              | 2                              | 0.009*                        | 506*                             | 17*                            |
| Simazine    | 0.02                                       | 400                              | 0                              | 0.01                          | 508                              | 1                              |
| Diuron      | 0.02                                       | 400                              | 2                              | 0.01                          | 508                              | 0                              |

<sup>±</sup> HPLC/MS

<sup>\*</sup>Atrazine + Desethyl-atrazine





<sup>&</sup>lt;sup>‡</sup> GC/MS or HPLC

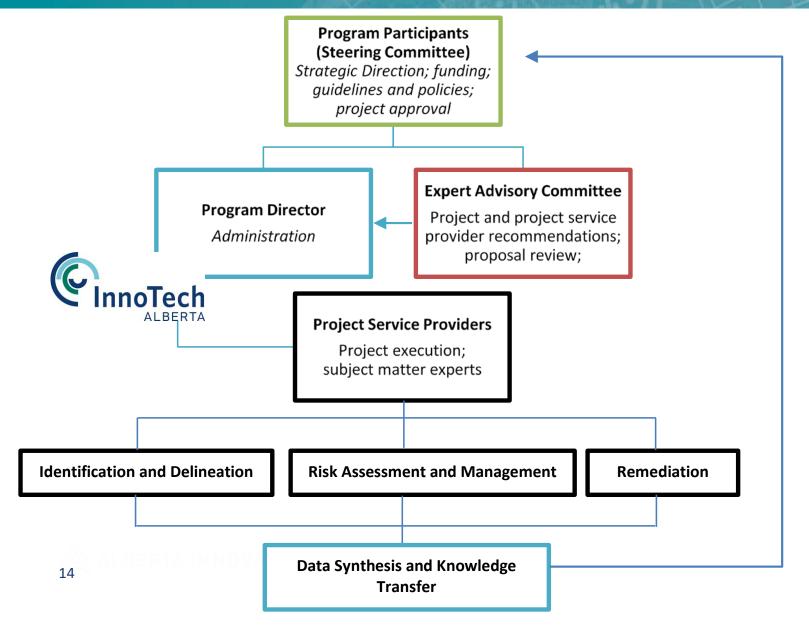
## Sterilants – What is the Solution?



#### **OBJECTIVE:**

To establish proven, technical, and cost-effective strategies and best management practices for effective management of sites impacted by residual soil sterilants, with the goal of achieving regulatory site closure.




# Sterilants – What is the Solution?







# **Sterilants Program**



- 5 year Program
  - Initiated in 2019
- Scope
  - Address challenges specific to AB
  - Bromacil and tebuthiuron
- Structure
  - Program management and delivery agent – InnoTech
  - Steering Committee
  - Expert Advisory Committee
- Budget
  - \$1.4M



# **Intended Outcomes**

| Program Area                      | Intended Outcome of the Program                                                                                                                                                                                                                                                                                                        |  |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Identification and Delineation    | The uncertainty associated with the methods used to identify when/where sterilant impacts occur is reduced.                                                                                                                                                                                                                            |  |  |  |
| Risk Assessment and<br>Management | <ul> <li>Reduction of risk associated with empirical data inputs to risk assessment models for protection of ecological pathways.</li> <li>Reduction of risk associated with sterilant re-activation after the use of immobilization technologies by demonstrating and quantifying their effectiveness with empirical data.</li> </ul> |  |  |  |
| Remediation                       | <ul> <li>Optimal, state-of-the-art technologies and/or processes are demonstrated<br/>under Alberta conditions.</li> </ul>                                                                                                                                                                                                             |  |  |  |
| Knowledge Transfer                | <ul> <li>Development and retention of a community of practice</li> <li>Annual workshops and technical information dissemination</li> </ul>                                                                                                                                                                                             |  |  |  |

# **Series of Projects**

| Program<br>Component |     | Project # and Title                                                            |  |  |  |
|----------------------|-----|--------------------------------------------------------------------------------|--|--|--|
|                      | 1.  | Decision Support Tool                                                          |  |  |  |
| Identification       | 2.  | Sampling Best Management Practices                                             |  |  |  |
| and<br>Delineation   | 3.  | aboratory Method Investigation                                                 |  |  |  |
|                      | 4.  | Detection of Bioavailable Sterilants                                           |  |  |  |
|                      | 5.  | Field Screening Technologies                                                   |  |  |  |
|                      | 6.  | Sterilant-Specific Model Input Data                                            |  |  |  |
| Risk<br>Assessment   | 7.  | Risk Assessment for Protection of Irrigation Water and Freshwater Aquatic Life |  |  |  |
| and Management       | 8.  | Investigating Sterilant Mobility in Alberta                                    |  |  |  |
|                      | 9.  | Native Species Toxicity Evaluation                                             |  |  |  |
|                      | 10. | Investigation of Long-term Effects of Activated Carbon                         |  |  |  |
| Remediation          | 11. | Alternative Technical Approaches for Sterilant Immobilization                  |  |  |  |
|                      | 12. | Remediation Demonstration(s)                                                   |  |  |  |

# Risk Assessment and Management Projects

| Program<br>Component           | Project # | Project<br>Initiation | Project Service Provider                           | Principle Investigator/Team                                       |
|--------------------------------|-----------|-----------------------|----------------------------------------------------|-------------------------------------------------------------------|
| Risk Assessment and Management | 6./8.     | October 2019          | Advisian  BUREAU VERITAS  UNIVERSITY GUELPH        | Aaron Tangedal<br>Adele Houston<br>Barry Loescher<br>Ryan Prosser |
|                                | 7.        | October 2019          | MILLENNIUM EMS Solutions Ltd.                      | Cory Kartz<br>Ian Mitchell                                        |
|                                | 9.        | October 2019          | InnoTech ALBERTA A SUBSIDIARY OF ALBERTA INNOVATES | Sarah Thacker<br>Bonnie Drozdowski                                |



# **Identification and Delineation Projects**

| Program<br>Component              | Project #        | Project Initiation | Project Service Provider                           | Principle Investigator/Team                       |
|-----------------------------------|------------------|--------------------|----------------------------------------------------|---------------------------------------------------|
| Identification and<br>Delineation | 1.               | March 2022         | TBD                                                | TBD                                               |
|                                   | 2.               | July 2020          | TBD                                                | TBD                                               |
|                                   | 3. March 2020    |                    | EnnoTech ALBERTA A SUBSIDIARY OF ALBERTA INNOVATES | Alberto Pereira<br>Julius Pretorius               |
|                                   | 4. April 1, 2020 |                    | UNIVERSITY OF ALBERTA                              | Jackie Maxwell, M.Sc. Candidate<br>Sylvie Quideau |
|                                   | 5.               | TBD (Soon)         | VERTEX Environmental Inc. Specialized Contractors  | Kevin French                                      |



# **Remediation Projects**

| Program<br>Component | Project # | Project Initiation | Project Service Provider                                | Principle Investigator/Team                                        |
|----------------------|-----------|--------------------|---------------------------------------------------------|--------------------------------------------------------------------|
|                      | 10.       | April 2020         | UNIVERSITY OF ALBERTA A SUBSIDIARY OF ALBERTA INNOVATES | Jackie Maxwell, M.Sc. Candidate<br>Sylvie Quideau<br>Sarah Thacker |
| Remediation 11.      | 11.       | Q2 2020/21         | TBD                                                     | TBD                                                                |
|                      | 12.       | Q1 2021/22         | TBD                                                     | TBD                                                                |



## Projects #6/8 Sterilant-Specific Model Input and Mobility in AB

#### **Progress to Date:**

- Sensitivity analysis of Tier 1 and 2 Models to focus laboratory experiments
- Literature review of metabolites/breakdown products
- Experimental design under review

#### **Laboratory Experiments using Alberta Soils:**

- Estimate half-life
- Identify metabolites
- Estimate K<sub>oc</sub> (water-organic carbon partition coefficient)

#### **Sterilant Fate and Mobility:**

- Historical data from sterilant contaminated sites supplemented by additional data collection
- 51 contaminated sites with available data identified targeted sampling and soil collection at 3 sites in 2020

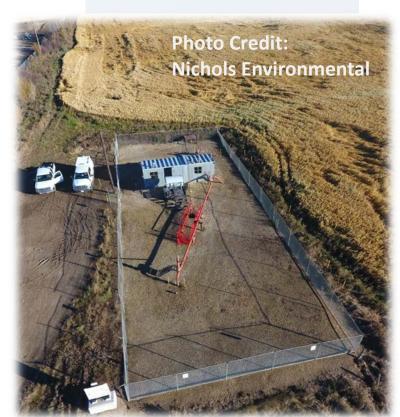








## Project #7 Risk Assessment for IW and FAL


### **Four Tasks:**

- 1. Tier 1 model evaluation on-going
- 2. Alternative model evaluation on-going
- 3. Risk Matrix development
- 4. IW and FAL guideline development

### **General findings to-date:**

- More recent aquatic toxicity data has limited application to Alberta conditions
- Potential opportunities for adjusting "chemicalspecific" parameters used in guideline derivation based on available literature – ensure Alberta relevance






# **Project #9 – Phytotoxicity Evaluation**

- Data from acute testing will be used to inform sterilant concentrations for definitive tests (Env. Canada Protocols)
- Measurements included shoot height for each living plant
  - Bromacil completed early March
  - Tebuthiuron will wrap up mid March
- Preliminary results
  - Germination not greatly impacted by † concentrations
  - Toxicity † over time
  - Various concentrations that were not lethal after 3 weeks, were found to be lethal after 6 weeks







## What's Next?

• Initiation of remaining projects

Annual workshop (beginning in March 2021)

 Knowledge synthesis and dissemination (www.cclmportal.ca)



Photo Credit:
Nichols Environmental



