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Abstract
1. Anthropogenic habitat alteration is leading to the reduction of global biodiversity. 

Consequently, there is an imminent need to understand the state and trend of 
habitat alteration across broad areas. In North America, habitat alteration has 
been linked to the decline of threatened woodland caribou. As such, habitat pro-
tection and restoration are critical measures to support recovery of self- sustaining 
caribou populations. Broad estimates of habitat change through time have set 
the stage for understanding the status of caribou habitat. However, the lack of 
updated and detailed data on post- disturbance vegetation recovery is an impedi-
ment to recovery planning and monitoring restoration effectiveness. Advances 
in remote sensing tools to collect high- resolution data at large spatial scales are 
beginning to enable ecological studies in new ways to support ecosystem- based 
and species- based management.

2. We used semi- automated and manual methodologies to fuse photogrammetry 
point clouds (PPC) from high- resolution aerial imagery with wide- area light detec-
tion and ranging (LiDAR) data to quantify vegetation structure (height, density, 
class) on disturbances associated with caribou declines. We also compared veg-
etation heights estimated from the semi- automated PPC- LiDAR fusion to heights 
estimated in the field, using stereoscopic interpretation, and using multi- channel 
TiTAN LiDAR.

3. Vegetation regrowth was occurring on many of the disturbance types, though 
there was local variability in the type, height and density of vegetation. Heights 
estimated using PPC- LiDAR fusion were highly correlated (r ≥ 0.87	 in	 all	 cases)	
with heights estimated using stereomodels, TiTAN multi- channel LiDAR and field 
measurements.

4. We demonstrated that PPC- LiDAR fusion can be operationalized over large areas 
to collect comprehensive and consistent vegetation data across landscape levels, 
providing opportunities to link fine- resolution remote sensing to landscape- scale 
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1  |  INTRODUC TION

Habitat alteration, as a result of both human land- use and climate 
change, is disrupting ecosystem processes and leading to the decline 
of many species across the globe (Betts et al., 2022; Foley et al., 2005; 
Newbold et al., 2015). The link between habitat alteration and biodi-
versity declines necessitates assessments of the impacts of habitat 
change on ecological systems (Díaz et al., 2020; Hansen et al., 2013; 
Tscharntke et al., 2012). Given the need for habitat assessment is 
largely global, monitoring and managing problems at regional land-
scapes is critical (Tscharntke et al., 2012).	Measuring	and	 tracking	
habitat often comes with a trade- off between extent and resolution, 
and too often a disconnect exists between the information available 
and the information needed to appropriately understand the status 
and trend of habitat. The combination of remote sensing tools and 
ecological research is coming together in promising ways to sup-
port species-  and ecosystem- based management over broad areas 
(Cavender- Bares et al., 2022; Queinnec et al., 2021). Large- scale 
habitat inventories will be necessary for future wildlife, habitat, and 
land- use management, understanding how global change influences 
ecological processes and how restoration ecology can address these 
changes.

Traditionally, habitat assessments have been conducted using 
field- based sampling to assess metrics of vegetation structure. 
While these fine- scale assessments are important for activities such 
as habitat restoration treatment monitoring (Filicetti et al., 2019; 
Fromm et al., 2019), they lead to inconsistent data collection across 
landscapes (Fromm et al., 2019; Luoma et al., 2017). At larger scales, 
forest inventories have traditionally been conducted using remote 
sensing tools such as aerial imagery and stereoscopic visualization, 
with recent advances such as the use of photogrammetry point 
clouds (PPC) supporting more detailed mapping of forest structure 
(Dietmaier et al., 2019; Jurado et al., 2022). Airborne and terrestrial 
laser scanning data, such as light detection and ranging (LiDAR), and 
imagery- based photogrammetry with horizontal and vertical accura-
cies of centimetres to meters across wide- areas provide the spatial 
continuity and resolution required for many applications (Hopkinson 
et al., 2016; Queinnec et al., 2021; Wulder et al., 2012). At larger 
scales still, satellite- based imagery or laser scanning data are be-
coming increasingly available at sufficient resolutions for some tasks 
(Jurado et al., 2022; Nasiri et al., 2022). With the increasing availabil-
ity of high- resolution data across landscapes, and ability to combine 

multiple data types (Jurado et al., 2022; Nasiri et al., 2022; Zhang & 
Lin, 2017), comes improved integration of remote sensing with eco-
logical studies.

The boreal forests of Canada are relatively intact compared to 
other nations (Coristine et al., 2019; Watson et al., 2016); yet, the cas-
cading influence of anthropogenic habitat alteration has been linked 
to the decline of threatened woodland caribou (Rangifer tarandus car-
ibou, hereafter termed ‘caribou’). Caribou habitat overlaps areas with 
high value for forestry and energy resources (Hebblewhite, 2017). 
As such, caribou ranges across western Canada are facing acceler-
ating habitat loss (Nagy- Reis et al., 2021). Anthropogenic habitat 
alteration in particular has changed the predator– prey dynamics 
and ecological processes in which caribou evolved. Vegetation re-
growth in polygonal disturbances (e.g. forest harvest areas) provides 
competing ungulates with increased forage availability (Serrouya 
et al., 2011). The resulting increase in the density of competing un-
gulates, such as white- tailed deer Odocoileus virginianus and moose 
Alces alces, which have higher fecundity than caribou, augments 
predator numbers and leads to unsustainable predation on caribou 
(Serrouya et al., 2021; Wittmer et al., 2005). Furthermore, energy 
developments in the boreal forests create linear forest clearings 
such as pipelines, roads and seismic lines used to delineate and 
access oil and gas reserves underground (termed ‘linear features’). 
These narrow linear features are associated with increased hunting 
efficiency of predators such as wolves Canis lupus (Dickie, Serrouya, 
McNay,	et	al.,	2017;	McKenzie	et	al.,	2012), increased predator use 
of	caribou	habitat	 (DeMars	&	Boutin,	2017) and increased caribou 
predation	(McKay	et	al.,	2021).

Effective habitat management, including protection and resto-
ration, requires up- to- date and accurate information about habitat 
status and post- disturbance vegetation recovery. Within the context 
of recovering threatened caribou populations, recent work has set 
the stage by estimating the net rate of change in forest cover by 
quantifying habitat loss and gain across western Canada's caribou 
ranges (Nagy- Reis et al., 2021). While these satellite- based metrics 
provide consistent and replicable tracking across large areas, the 
lack of updated and detailed vegetation data across the vast areas 
of the boreal forest has been highlighted as an impediment to re-
covery planning, especially because many disturbance types are 
poorly tracked using traditional remote sensing methods (Nagy- Reis 
et al., 2021). Localized studies have revealed thresholds between 
vegetation structure and reduced travel speed by both wolves and 

ecological studies. Crucially, these data can be used to estimate rates of habitat 
recovery at resolutions that are not feasible using more commonly used satellite- 
based sensors, bridging the gap between resolution and extent. Such data are 
needed to achieve effective and efficient habitat monitoring to support caribou 
recovery efforts, as well as a myriad of additional forest management needs.

K E Y W O R D S
habitat assessment, light detection and ranging, photogrammetry, Rangifer tarandus, 
vegetation recovery
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humans	on	 linear	 features	 (Dickie,	Serrouya,	DeMars,	et	al.,	2017; 
Finnegan, Pigeon, et al., 2018; Pigeon et al., 2016). Likewise, the 
replacement of mature trees with early- seral forage, particularly 
within polygonal features such as forest harvest areas, is linked to 
increased	use	and	abundance	of	ungulates	such	as	moose	(Mumma	
et al., 2020), with an expected increase in wolf abundance and 
therefore decreased caribou persistence (Wittmer et al., 2007). 
Therefore, vegetation height and density by class (i.e. shrub versus 
coniferous or deciduous trees) are considered key metrics to track 
the functional recovery of caribou habitat. However, given the mag-
nitude of anthropogenic habitat alteration within boreal caribou 
ranges (Nagy- Reis et al., 2021), tracking post- disturbance recovery 
at scale remains a daunting challenge.

Despite the growing evidence that optical and laser- scanning 
data can provide accurate estimations of vegetation structure (St- 
Onge et al., 2015; Wang et al., 2019), the use of high- resolution for-
est structure information has yet to be widely adopted in ecological 
studies. We demonstrate the use of high- resolution remote sensing 
across broad areas to collect up- to- date and accurate information 
on post- disturbance vegetation structure to support tracking habi-
tat change for a threatened ungulate. We first fuse PPC from high- 
resolution aerial imagery with LiDAR data to quantify vegetation 
structure on polygonal and linear features associated with caribou 
declines. We interpret these vegetation metrics within the context 
of caribou habitat recovery. We then validated vegetation structure 
metrics derived from PPC- LiDAR fusion by comparing them to field- 
based measurements (i.e. the ‘gold standard’ for validation), manual 
stereoscopic visualization (i.e. a traditional technique for remotely 
sensed vegetation inventorying), and multi- channel TiTAN LiDAR 
measurements (Hopkinson et al., 2016; i.e. a state- of- the- art tech-
nique for high- resolution remotely sensed vegetation inventorying). 
Finally, we discuss data limitations and the next steps for the ap-
plication of these methods to support local and regional vegetation 
assessments and habitat management.

2  |  MATERIAL S AND METHODS

We leveraged two data sets to measure post- disturbance vegeta-
tion recovery on polygonal and linear features linked to caribou de-
clines. On most disturbance types, we fused a digital surface model 
(DSM)	derived	from	high-	resolution	optical	imagery	PPC	with	a	bare	
earth	digital	terrain	model	(DTM)	derived	from	wide-	area	LiDAR	in	a	
semi- automatic process to quantify structure (height and density) of 
shrubs and trees. PPC provides estimates of tree- top locations, but 
visual obstruction of the ground creates difficulties with accurately 
estimating bare earth (and so, height). We therefore used previously 
collected wide- area LiDAR data to derive bare earth measurements. 
Wide- area LiDAR data with older vintages are often not collected 
at sufficient resolutions for estimating vegetation metrics, but do 
provide useful information on bare earth. The fusion of these two 
data sets allowed us to first estimate tree- top locations, and sec-
ond	subtract	the	difference	between	the	two	metrics	(DSM-	DTM),	

yielding estimates of vegetation height. Using this semi- automated 
process, we combined the tree- top locations with estimated heights 
to estimate the height and density of trees post- disturbance across 
large areas. We supplemented the semi- automated PPC- LiDAR pro-
cess using stereoscopic interpretation of vegetation structure and 
class on narrower features, such as seismic lines, where adjacent 
canopy prohibited the automated PPC- LiDAR process. We first de-
scribe the methodological details developed to estimate vegetation 
structure using PPC- LiDAR fusion (Developing and applying PPC- 
LiDAR fusion), then describe the methodology used to validate our 
PPC- LiDAR height measurements (Testing accuracy of vegetation 
height estimates).

2.1  |  Developing and applying PPC- LiDAR fusion

2.1.1  |  Study	area

We assessed post- disturbance vegetation recovery at approximately 
20 townships (~94 km2	per	township;	total	of	1883 km2) distributed 
across four areas in northwestern Alberta, Canada (Figure 1) in 
two	 caribou	 ranges.	 The	 Chinchaga	 (17,643.64 km2) and Caribou 
Mountains	(20,658.73 km2) caribou ranges are located in the boreal 
forest of northwestern Alberta. The area is characterized by a mosaic 
of upland forests dominated by white spruce Picea glauca, trembling 
aspen Populus tremuloides, and balsam poplar Populus balsamifera, 
mixed	with	poorly	drained	 lowlands.	The	Caribou	Mountains	 cari-
bou range overlaps a low plateau left unglaciated during the last ice 
age, leaving behind unique remnant communities of lichens, vascular 
plants and mosses not found in the surrounding areas.

Approximately 19% of the boreal forests of Alberta are directly 
impacted	 by	 human	 footprint	 (Alberta	 Biodiversity	 Monitoring	
Institute, 2018a). The majority of this human footprint is from the 
agriculture (11.5%), forestry (3.8%) and energy (1.8%) sectors. 
Approximately	74%	of	the	Chinchaga	range	and	23%	of	the	Caribou	
Mountains	 range	 is	 influenced	by	anthropogenic	habitat	alteration	
(defined	 as	 habitat	 alteration	 buffered	 by	 500 m;	 Environment	
Canada, 2012; Environment and Climate Change Canada, 2017). 
Additionally, fire impacts approximate 8% of the Chinchaga range 
and	44%	of	the	Caribou	Mountains	range.

2.1.2  |  Data	collection

We	produced	a	DSM	using	PPC	data	derived	from	optical	imagery.	
Imagery was acquired using a Piper PA31 Navajo aircraft during 
the leaf- on season of 2020 (September 8, 10 and 22) across three 
areas	in	Chinchaga	(C1:	380.03 km2,	C2:	379.93 km2,	C3:	383.79 km2) 
and	two	areas	in	Caribou	Mountains	that	were	then	combined	(CM:	
739.43 km2).	 Imagery	was	 flown	 at	 an	 average	 altitude	 of	 3550 m	
above terrain. The areas were selected based on overlap with cari-
bou range, presence of energy footprint and accessibility for field 
measurements. We used a high- end, large- frame Leica Digital 
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Media	 Camera	 (DMC)	 III	 Airborne	 Digital	 Camera,	 manufactured	
by	Hexagon,	Leica	Geosystem.	DMC	III	uses	Complementary	Metal	
Oxide Semiconductor sensor technology and has five lens configura-
tions, each for a separate spectral band (Panchromatic, Red, Green, 
Blue and Near- Infrared). The Near- Infrared band reflects chlorophyll 
more than other bands, and so is key to classifying vegetation. We 
captured images with below 15- cm spatial resolution to ensure that 
resampling of the orthophoto mosaic resulted in a 15- cm ground 
sampling distance (GSD). Images were captured with 80% forward 
overlap and 30% lateral overlap to increase the number of instances 
per each subject point during the PPC generation process.

To	characterize	bare	earth,	we	created	a	bare	earth	DTM	using	
provincial LiDAR data collected from 2005 to 2008 and processed by 
the Government of Alberta (see Nagy- Reis et al., 2021; Van Rensen 
et al., 2015 for previous applications of these data). The LiDAR data 
were collected by Airborne Imaging with an average point density 
of	1.65 points/m2, a vertical accuracy (maximum root- mean- square 
errors)	of	0.30 m	and	horizontal	accuracy	of	0.45 m.

2.1.3  |  Data	processing

We processed the imagery to generate high- resolution multiband 
orthophoto mosaics and 3- dimensional (3D) point clouds. The im-
agery was organized into four blocks (Chinchaga 1, Chinchaga 2, 
Chinchaga	3	and	Caribou	Mountains)	using	the	direct	georeferenc-
ing information. We adjusted each block using an aerial triangula-
tion bundle adjustment process to identify the position of photo 
centres and orientation of the camera at the moment of exposure. 
We used the GPS location of the centre of each photo, and exte-
rior orientation angles to connect image coordinates to real- world 
locations. We determined the accuracy of each block adjustment by 
comparing randomly distributed elevation points to the bare earth 
DTM	(Supplemental Information). The spatial accuracy of the aerial 
adjustments was within the expected specifications of three times 
the	GSD	of	15 cm.

Aerial imagery is distorted by the tilt of the camera, camera 
distortions and elevation changes in terrain. We therefore used 

F I G U R E  1 Study	area	locations,	
including the independent testing location 
(Ecosystem	Management	Emulating	
Natural	Disturbance	[EMEND]	project),	
in relation to boreal caribou range in 
northwestern Alberta. Inset map shows 
the percent human footprint across 
Alberta	(Alberta	Biodiversity	Monitoring	
Institute, 2018b) for reference.
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orthorectification to create a constant scale across aerial photos. 
We	used	 the	LiDAR-	derived	bare	earth	DTM	as	 a	base	 for	ortho-
rectification. The orthorectification process generated one ortho-
photo	per	image	with	a	spatial	resolution	of	15 cm	GSD.	We	set	the	
radiometric resolution to four spectral bands— Red, Green, Blue and 
Near- Infrared. Consequently, we used high- end colour balancing 
processing to produce a seamless mosaic over the entire project 
area. This process was semi- automatic, with manual quality control 
of generated seamlines, which were edited as needed. Finally, we 
generated	 3D	PPC	 from	 imagery	 using	 the	 Semi-	Global	Matching	
method and set the density of the point cloud to be one- pixel (GSD 
of	15 cm),	resulting	in	an	ultra-	dense	point	cloud	suitable	for	conse-
quent	detailed	vegetation	analysis.	We	used	PHOTOMOD	Version	
7.2	for	orthorectification	and	to	generate	point	clouds.

We modelled tree- top locations in which to extract height to by 
analysing the PPC files with the R package lidR (Roussel et al., 2020). 
First, we normalized points to be relative to the ground surface 
using	the	wide-	area	LiDAR-	derived	bare	earth	DTM.	We	then	mod-
elled tree- top locations using the PPC by determining a location 
and height of each point cloud cluster using a local maximum filter 
(LMF).	We	used	a	variable	window	size	for	the	LMF,	depending	on	
the height of the vegetation being measured. The window size was 
locked	at	0.75 m	 for	all	points	below	3 m,	and	at	3 m	 for	all	points	
higher	than	17 m.	Window	size	for	vegetation	between	3	and	17 m	
was computed by exponential function:

We improved the algorithm through trial and error by projecting the 
‘LidR’ output into the 3D softcopy stereomodels from optical imag-
ery	using	DATEM	Summit	Evolution,	and	modifying	the	algorithm	until	
vegetation tops matched the visible tops of vegetation in the softcopy 
stereomodels.

2.1.4  |  Data	analysis

For	all	 feature	 types,	 the	Alberta	Biodiversity	Monitoring	 Institute's	
Human	 Footprint	 Inventory	 (Alberta	 Biodiversity	 Monitoring	
Institute, 2018b) was used to delineate disturbance outlines. For 
polygonal disturbance types such as wellpads, pipelines and harvest 
areas, we combined the PPC- derived tree- top locations and assigned 
a	height	to	each	individual	tree	or	shrub	above	1 m	tall	by	subtracting	
the	LiDAR-	derived	DTM	from	the	PPC-	derived	DSM.	Features	below	
1 m	may	 include	non-	canopy	vegetation	 (such	as	grasses)	and	other	
features such as dirt piles, and thus were excluded. We then calculated 
vegetation	density	as	the	number	of	trees	or	shrubs	above	1 m	per	unit	
area (hereafter termed ‘tree density’, though we do not discriminate 
between shrubs and trees) and the median height of trees for each 
disturbance polygon. We calculated median rather than mean height 
because polygon boundaries occasionally included trees adjacent to 
the human footprint, which disproportionately affects the mean.

Narrower linear features such as seismic lines and trails are often 
overshadowed by adjacent trees, and vegetation underneath the 

adjacent canopy cannot be reliably classified using an automated 
process with PPC data (Dietmaier et al., 2019). We therefore used a 
manual classification process for these features. We modified cen-
trelines for the seismic line corridors by manual stereomodel digi-
tization at a scale of approximately 1:3000 to improve the spatial 
accuracy of interpreted seismic lines, which are less accurate than 
larger polygonal disturbances. For each seismic line segment con-
necting intersections with other features, we manually estimated 
vegetation type, density of each vegetation type (here assessed as 
percent cover from a bird's eye view) and average height of each 
vegetation type using stereo imagery interpretation (Supplemental 
Information). Vegetation was classified as coniferous trees, decid-
uous trees, shrubs, graminoids, lichens, bryophytes, non- vegetated 
and water following the Alberta Vegetation Inventory standards 
(Agriculture Forestry and Rural Economic Development, 2022), and 
reviewed against field photos during interpretation for quality as-
surance. We recorded the percent cover of the three most dominant 
vegetation types that were visible, and classified each segment of 
seismic line as the vegetation type with the highest percent cover 
value.

2.2  |  Testing accuracy of vegetation 
height estimates

We used two approaches to test the accuracy of estimated vegeta-
tion heights from PPC- LiDAR fusion. First, we compared heights 
derived from PPC- LiDAR fusion to estimates from two other estab-
lished techniques used within the study area: manual stereo image 
visualization, a long- established traditional technique for vegeta-
tion inventories and field measurements, which is considered the 
‘gold standard’ data collection for validation (though see Luoma 
et al., 2017). Second, to validate the method's generalizability and 
to reduce the risk of overfitting to specific conditions or data set, 
in an independent study area we compared heights measured using 
manual stereo image visualization, field measurements, PPC- LiDAR 
fusion, and a state- of- the- art high- resolution multi- channel TiTAN 
LiDAR (see below).

Within our main study area, we sampled 120 sites distributed 
across the four areas where optical data were collected. Sites were 
selected to ensure sampling encompassed a range of disturbance 
types in a stratified random design (10 harvest area sites, 10 wellpads 
and 10 linear features sites). At each site, we took georeferenced 
photos to aid in interpretation of vegetation classes, and measured 
the height of three to five dominant or co- dominant canopy- layer 
trees	spaced	at	 least	10 m	from	each	other.	We	stratified	sampling	
equally across the most common tree species at each site. Trees 
under	2 m	in	height	were	measured	using	a	reference	pole	with	mea-
surement	markings,	 and	 those	 over	 2 m	 in	 height	 were	measured	
using a Vertex Hypsometer. We projected tree height measurements 
from field verification sites onto the 3D- stereomodels using the 
georeferenced photos to identify the exact tree that was measured 
in the field. We also projected the tree top locations generated by 

W = �.�∗
(

−
(

���
(

− �.���∗(x − �.��)
)

− �.��
))

+ �
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the lidR package, with heights estimated by PPC- LiDAR fusion, onto 
the 3D- stereomodels. We visually estimated heights within the ste-
reo	environment	using	DATEM	Summit	Evolution.

To evaluate the strength of the relationship between measure-
ments from the PPC- LiDAR fusion process to the field and stereo-
model interpretation values, we first calculated Pearson correlation 
coefficients. We separated coniferous and deciduous trees and 
pooled observations across the four study area blocks. To fur-
ther understand how PPC- LiDAR fusion estimates were related to 
these two other methods, and how this depended on tree type, we 
modelled the estimated tree height as a function of measurement 
method, interacting with tree type (deciduous vs. coniferous) as 
fixed effects and pooled observations across the study blocks.

Second, we used an independent data set in partnership with the 
Ecosystem	 Management	 Emulating	 Natural	 Disturbance	 (EMEND)	
Project (Figure 2).	The	EMEND	research	site	is	located	in	the	Lower	
Foothills	 Ecoregion	 of	Alberta,	 approximately	 90 km	 north-	west	 of	
Peace River, and is within the Chinchaga caribou range (Figure 1). At 
the	EMEND	study	site,	multi-	channel	TiTAN	airborne	LiDAR	system	
(Teledyne Optech, Ontario) was used to collect high- density point 
clouds.	Multi-	channel	LiDAR	was	collected	using	a	Piper	Navajo	sur-
vey	aircraft	on	8	August	2020.	Survey	parameters	were	100 kHz	per	
channel	with	a	50-	degree	field	of	view,	32 Hz	scan	frequency	and	50%	
swath sidelap. Ground speed was ~70 m/s	at	an	altitude	of	~1000 m	
above	ground.	Point	density	varied	between	10	and	20 points/m2 and 
the	relative	elevation	accuracy	over	selected	tie	planes	was	0.04 m.	

TiTAN LiDAR point clouds were processed using the same workflow 
as above, but such that both vegetation structure and bare earth 
were estimated using the TiTAN LiDAR, using the package lidR. Field 
surveys	were	also	conducted	at	11	sites	in	the	EMEND	study	area	in	
August 2021 to measure three dominant or codominant trees at each 
site following the methods described above.

We acquired additional aerial imagery during the leaf- on season of 
2020 (September 8). Using the same PPC- LiDAR workflow as above, 
we estimated individual tree heights using PPC derived from the ae-
rial imagery and wide- area LiDAR. We also visually estimated heights 
within	the	stereo	environment	using	DATEM	Summit	Evolution.	We	
identified the same trees in each data set (TiTAN LiDAR, PPC- LiDAR 
fusion, stereomodels, and field data) by projecting the ‘LidR’ outputs 
and field- measured trees into the 3D softcopy stereomodels. We tar-
geted dominant and codominant trees to improve our ability to mea-
sure the same trees using the different approaches, and as such we 
locked	 the	window	size	 for	 the	LMF	algorithm	at	1 m	 for	 all	 points	
below	2 m,	and	at	3.5 m	for	all	points	higher	than	18 m.	We	again	op-
timized the algorithm through trial and error until vegetation tops 
match visible tops in the stereomodels. For vegetation between 2 and 
18 m,	the	window	size	was	computed	by	the	linear	function:

We again evaluated the Pearson correlation between estimated 
heights from PPC- LiDAR fusion, TiTAN LiDAR, stereomodel visual-
ization, and field measurements, then modelled the estimated tree 

� = x
∗ �.�� + �.�.

F I G U R E  2 Example	comparison	of	tree	heights	measured	in	the	field	(left),	using	PPC-	LiDAR	fusion	(center)	and	TiTAN	LiDAR	(right).	Z 
measurement indicates height in meters.
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height as a function of measurement method, interacting with tree 
type (deciduous vs. coniferous) as fixed effects using a linear model 
(see Supplemental Information for more details).

3  |  RESULTS

3.1  |  Developing and applying PPC- LiDAR fusion

Vegetation on non- seismic polygonal disturbances in all study blocks 
had	an	average	median	height	below	5 m	(Table 1). There was con-
siderable variation in average median heights across disturbances 
within study blocks as well as between study blocks (Figure 3; 
Supplemental Information). All sites had some features with a me-
dian	 height	 above	 10 m,	 and	 some	were	 as	 high	 as	 24 m.	Harvest	
areas tended to have higher average median heights than wellpads 
and pipelines. Tree density on harvest areas and pipelines typically 
exceeded 1000/ha, whereas density on wellpads did not. The C1 site 
had the lowest mean median height on all feature types, and tended 
to have some of the lowest tree densities (Table 1; Figure 3).

Most	vegetation	on	seismic	lines	was	under	1.5 m,	though	there	
was variation between sites (Figure 3; Supplemental Information). 
The	CM	site	had	the	highest	proportion	of	vegetation	exceeding	5 m	
and	vegetation	between	1.5	and	5 m	(Table 2). The remaining sites 
(C1, C2, and C3) had 2% or fewer seismic lines with vegetation ex-
ceeding	5 m,	 and	>65%	under	1.5 m.	The	majority	of	 seismic	 lines	
were	shrub	dominated	in	CM	and	C3,	but	were	dominated	by	a	mix	of	
shrubs and bryophytes in C1 and C2 (Table 2; Figure 3; Supplemental 
Information). Few seismic lines were dominated by either deciduous 
or	coniferous	trees,	though	CM	had	a	total	of	14%	of	seismic	lines	
dominated by all tree species combined. Fewer than 1% of seismic 
lines were either dominated by lichens or were non- vegetated.

3.2  |  Testing accuracy of vegetation 
height estimates

Within the main study area, tree heights estimated using PPC- 
LiDAR fusion were highly correlated with those estimated in the 
field (r = 0.87	 for	 coniferous;	 r = 0.93	 for	 deciduous;	 p < 0.05)	 and	
using stereomodels (r = 0.98	 for	 coniferous;	 r = 0.97	 for	deciduous;	
p < 0.05).	 On	 average,	 trees	 heights	 estimated	 using	 PPC-	LiDAR	

fusion	 were	 2.7 m	 smaller	 than	 heights	 estimated	 in	 the	 field	
(β = −2.723,	SE = 0.931;	p < 0.05)	but	not	different	than	using	stereo-
models (Figure SI.1; Table SI.2).

In the independent study area, tree heights measured from 
PPC- LiDAR fusion, stereomodel interpretation, TiTAN LiDAR 
and field measurements were highly correlated (r > 0.97,	 p < 0.05,	
Supplemental Information). Tree heights derived from PPC- LiDAR 
fusion tended to be smaller than those measured from field measure-
ments, stereomodel interpretation and TiTAN LiDAR, but there was 
no significant difference (p < 0.05;	Figure 4; Table SI.3). Furthermore, 
the effect of measurement type did not differ between deciduous 
and coniferous trees (p < 0.05;	Table SI.3).

4  |  DISCUSSION

Effective habitat management at local and landscape scales relies 
on accurate and consistent information about the vegetation com-
munity. We fused high- resolution PPC data with wide- area LiDAR 
data to collect high- resolution vegetation data consistently across 
human- altered habitat, and demonstrated operational applicability 
across large areas. We estimated the height and density of vegeta-
tion on polygonal features using a semi- automated process, as well 
as height and class (coniferous tree, deciduous tree, shrub, other) 
of vegetation on seismic lines through manual interpretation. We 
found that wellpads and pipelines were characterized by low den-
sity, short vegetation, whereas harvest areas were typically charac-
terized by taller vegetation and a higher tree density. We also found 
limited vegetation on seismic lines, despite the fact that many of 
these human- created features were created decades ago (Pattison 
et al., 2016). Sparsely vegetated features were dominated by shrubs 
or low- lying vegetation such as bryophytes and graminoids, rather 
than coniferous or deciduous trees. Limited recovery of tree species 
on anthropogenic features, particularly seismic lines, is consistent 
with previous reports of stagnated regeneration on human- created 
features in the boreal forests of Alberta (Lee & Boutin, 2006; Nagy- 
Reis et al., 2021; Van Rensen et al., 2015).

Understanding vegetation recovery on human- altered habitat is 
particularly important when vegetation structure has been linked to 
the mechanisms of species' decline. Linear features such as pipelines 
and seismic lines facilitate increased predator movement, which is hy-
pothesized to increase encounter rates with prey such as Threatened 

TA B L E  1 The	mean	of	the	median	vegetation	height	(m)	and	density	(trees/ha)	on	non-	seismic	human-	altered	habitat.	Values	are	the	
median	height	of	each	feature,	averaged	by	feature	type.	CM,	Caribou	Mountains;	C1,	Chinchaga	1;	C2,	Chinchaga	2;	C3,	Chinchaga	3.

Average median height (m) Density (trees/ha)

Site Pipelines Wellpads Harvest areas Other features Pipelines Wellpads Harvest areas Other features

CM 3.6 2 — 2.9 1320 973 — 943

C1 2.6 1.9 — 2.1 1072 910 — 976

C2 3.7 3.4 4.3 3.4 1458 1245 1746 1249

C3 — 2.2 4.1 3 — 636 1933 2009
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8 of 13  |    Ecological Solutions and Evidence DICKIE et al.

F I G U R E  3 Example	state	of	vegetation	recovery	on	seismic	lines	and	polygonal	disturbances	in	the	Chinchaga	3	block.	From	top	to	
bottom, figures depict dominant vegetation type on 500- m sections of seismic line, the height of the dominant vegetation type on 500- m 
sections of seismic lines, median height (m) on non- seismic human footprint features and density (trees/ha) on non- seismic human footprint 
features.
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    |  9 of 13Ecological Solutions and EvidenceDICKIE et al.

caribou	(Dickie,	Serrouya,	McNay,	et	al.,	2017;	McKenzie	et	al.,	2012). 
Increased vegetation height, cover and roughness on linear features 
have been shown to slow the movement speed of wolves, presum-
ably	decreasing	encounter	rates	with	prey	(Dickie,	Serrouya,	DeMars,	
et al., 2017; Finnegan, Pigeon, et al., 2018). In our study, few seis-
mic lines exceeded vegetation heights previously found to reduce 
wolf travelling speed to that of surrounding forest (Dickie, Serrouya, 
DeMars,	et	al.,	2017; Finnegan, Pigeon, et al., 2018). Indeed, the ma-
jority of seismic lines were characterized by vegetation heights below 
1.5 m,	 suggesting	 that	 they	 may	 be	 near	 or	 below	 height	 thresh-
olds found to slow wolf speeds even marginally (Dickie, Serrouya, 
DeMars,	et	al.,	2017). In addition, vegetation rarely exceeded heights 
observed to deter human use of seismic lines (Pigeon et al., 2016). 
Continued human use of these features likely feeds back into limited 

recovery as regenerating vegetation is continually disturbed (Van 
Rensen et al., 2015). Considering the composition of regenerating 
vegetation is also important, because increased shrub, graminoids 
and grass cover may increase forage availability for the apparent 
competitors	of	caribou	(Finnegan,	MacNearney,	et	al.,	2018). Habitat 
restoration, with the goal of simultaneously returning forest cover 
and restoring predator– prey interactions, has been identified as a key 
management action for the recovery of boreal caribou populations 
(Environment and Climate Change Canada, 2020). It is estimated 
that habitat restoration will require billions of dollars given there are 
hundreds of thousands of kilometres of seismic lines alone (Johnson 
et al., 2019; Serrouya et al., 2020). Identifying where human- altered 
habitat is already recovering will help to prioritize habitat restoration 
activities into areas where vegetation regrowth is limited.

Percent area by vegetation 
height class Percent area by vegetation class

Site >5 m 1.5– 5 m <1.5 m Coniferous Deciduous Shrubs Other

CM 11 46 42 5 9 72 15

C1 2 12 87 1 8 33 57

C2 1 21 78 0 0 49 51

C3 0 33 67 <1 <1 69 30

TA B L E  2 Percent	area	(%)	of	seismic	
lines covered by the dominant vegetation 
class,	by	height	category	and	class.	CM,	
Caribou	Mountains;	C1,	Chinchaga	1;	C2,	
Chinchaga 2; C3, Chinchaga 3.

F I G U R E  4 Vegetation	heights	(m)	estimated	using	photogrammetry	point	cloud	(PPC)-	light	detection	and	ranging	(LiDAR)	fusion,	manual	
stereomodel visualization, TiTAN LiDAR, and field measurements. The blue line and shading represent a simple linear model for each plot 
and the associated 95% confidence intervals. The dashed line represents the 1 to 1 relationship. N = 33	individual	trees	measured,	though	2	
were not measured using stereomodels and 1 was not measured using PPC because the individual tree could not be confidently identified.
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10 of 13  |    Ecological Solutions and Evidence DICKIE et al.

For many species at risk, detailed information on habitat sta-
tus and trend is a limiting factor for effective habitat and species 
management. Fundamentally, informed decision- making requires 
an understanding of the mechanistic relationships that link hab-
itat alteration to declines (North et al., 2017). From there, up- to- 
date information on habitat can be used to effectively plan and 
monitor management actions such as protection and restoration. 
Additionally, understanding the factors limiting regeneration can 
help target treatment types and intensity to increase restoration 
effectiveness (Suding, 2011). Previous investigations found that un-
derlying habitat wetness was a predominant predictor of vegetation 
regeneration on seismic lines (Van Rensen et al., 2015). Van Rensen 
et al. (2015) used LiDAR- derived data with 2- m horizontal resolution 
to evaluate seismic line regeneration, which included well- balanced 
resolution and extent, given the technology that was available at 
that time. However, the LiDAR resolution was not sufficient to es-
timate metrics that reflect underlying mechanisms linked to wolf 
movements	 (Dickie,	Serrouya,	DeMars,	et	al.,	2017). Linking wide- 
area mapping of post- disturbance recovery will further elucidate the 
driving factors of vegetation regeneration and allow more effective 
modelling of habitat structure across time and space.

To date, the gold standard for habitat inventories has been 
ground- based surveys. For example, field plots continue to be used 
to monitor post- disturbance and post- restoration recovery of cari-
bou habitat (Government of Alberta, 2018). However, these surveys 
often present logistical and financial constraints, particularly in areas 
that are remote or otherwise difficult to access, have imperfect pre-
cision, and are impractical to extrapolate to broad scales (Luoma 
et al., 2017). Advances in remote sensing have accelerated the devel-
opment of processes to monitor and inventory habitat at large scales 
(Bhatt et al., 2022;	McDermid	et	al.,	2005; Wulder et al., 2012). Even 
so, there is a trade- off between the scale of monitoring and the res-
olution of information acquired. To meet ‘intermediate’ needs, the 
combination of LiDAR, high- resolution imagery and satellite- based 
tools is promising (Queinnec et al., 2022; Wulder et al., 2007). We 
demonstrate the applicability of fusing high- resolution PPC and 
previously collected LiDAR to accurately measure vegetation across 
large areas, with the recognition that this is only one method avail-
able	within	the	broader	toolkit.	Many	previous	applications	of	PPC	
and LiDAR to estimate forest structure and post- disturbance veg-
etation recovery have been promising, but limited to small areas 
(Gyawali et al., 2022; St- Onge et al., 2015; Ventura et al., 2022). 
Collecting LiDAR data at a fine enough resolution to estimate post- 
disturbance vegetation recovery is often cost- prohibitive at large 
scales. However, by pairing lower- resolution LiDAR, even with older 
vintages, with high- resolution and up- to- date optical data, which is 
less costly to collect and process than LiDAR, one can effectively 
estimate forest structure.

Our estimates provided sufficient accuracy to measure vege-
tation structure relevant to inform caribou habitat management 
using previously identified mechanisms of wolf movement, and to 
inform habitat status against government standards (Government 
of Alberta, 2018). Vegetation heights estimated using PPC- LiDAR 

fusion were consistent with those estimated using traditional manual 
stereo image visualization and state- of- the- art TiTAN LiDAR, though 
field measurements underestimated heights relative to these other 
methods (see Luoma et al., 2017). This suggests that PPC- LiDAR fu-
sion represents a promising tool to pair widely available, but coarse, 
LiDAR with high- resolution aerial imagery to inventory vegetation 
structure using a semi- automated process that is more efficient than 
traditional interpretation techniques, but lower cost than state- of- 
the- art LiDAR data. Continued technological improvements, such 
as machine learning, will improve processing power, automation and 
computing capacity (Bhatt et al., 2022; Gandomi & Haider, 2015). 
For example, automated fusion of LiDAR and PPC using machine 
learning will improve efficiencies and applicability across even larger 
scales still. The predominant limitation of our current approach is the 
inability to analyse understorey plants when the view is obstructed 
by tree canopies. Further integration of multispectral, hyperspec-
tral, and LiDAR data using complex machine learning methods such 
as deep learning should improve the ability to estimate understorey 
vegetation structure by extracting complex patterns and relation-
ships between vegetation characteristics and environmental factors. 
Fusion with additional free or low- cost satellite- based data will also 
expand the spatial and temporal scales in which vegetation structure 
can be monitored (Wulder et al., 2007), depending on the resolution 
of information needed to tie vegetation structure to the ecological 
mechanisms of interest. In addition to costs associated with collect-
ing and processing high- resolution imagery, highly skilled analysts 
that are familiar with the analytical methods and study system is 
another barrier to upscaling our PPC- LiDAR approach, particularly 
for narrow linear features where manual interpretation is necessary.

Opportunities for the application of PPC- LiDAR fusion beyond 
the caribou habitat management context we provide are extensive, 
particularly where satellite- based data do not provide the resolu-
tions required to match the ecological mechanisms in question, yet 
acquisition of high- resolution aerial-  or terrestrial- based LiDAR is 
cost- prohibitive. Accurately measuring vegetation regenerating 
on forest harvest areas can contribute to sustainable forest man-
agement through informed harvest planning, assessment of grow-
ing stock, and optimized land- use planning (Wulder et al., 2008). 
Likewise, measuring forest regeneration following natural distur-
bances, such as wildfires and pest outbreaks, will be essential for 
forest management, particularly in the context of climate change 
(Brecka et al., 2020; Stralberg et al., 2018). Repeat measures of vege-
tation can be used for change detection (Tompalski et al., 2021), and 
to evaluate habitat restoration, as has been demonstrated in aquatic 
environments (Ventura et al., 2022). If the date of disturbance is 
known, or vegetation structure has been estimated at multiple time 
periods, vegetation recovery rates can be estimated using multivari-
ate time series across the vast array of ecological conditions that this 
broad sampling will encompass. Finally, integrating high- resolution 
wide- area mapping with satellite- based time- series data provides 
the opportunity to evaluate trends in forest structure and compo-
sition over longer spatiotemporal scales (White et al., 2022; Wulder 
et al., 2007).
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table SI.1.	Control	projection	center	residuals.	Mean	absolute,	RMS,	
and maximum are presented for each site. The number of points 
(differences) was 488 for Chinchaga 1, 495 for Chinchaga 2, 433 for 
Chinchaga	3,	and	997	for	Caribou	Mountains.
Table SI.2. Linear model results evaluating the effect of measurement 
method	 on	 estimated	 tree	 heights	 (m).	 Measurement	 method	
interacting with tree type (deciduous vs. coniferous, with coniferous 
as the reference category) was included as fixed effects for each 
model, and observations across the study blocks were pooled.

Table SI.3. Linear model results evaluating the effect of measurement 
method	 on	 estimated	 tree	 heights	 (m)	 in	 the	 EMEND	 study	 site.	
Measurement	method	 is	 included	as	an	 interaction	with	 tree	 type	
(deciduous vs. coniferous). PPC- LiDAR fusion and coniferous trees 
are set as the reference category.
Figure S1.1. Vegetation heights (m) measured using photogrammetry 
point cloud– LiDAR fusion (PPC). photogrammetry stereomodels 
(Stereo), and field measurements (Field). Solid lines represent the 
simple linear model for each plot, separated by coniferous and 
deciduous vegetation types, and the associated 95 % confidence 
intervals. Dashed line represents the 1 to 1 relationship.
Figure S1.2. Comparison of tree heights measured using stereomodel 
visualization (stereo), field measurements (Field), TiTAN multi- 
spectral light detection and ranging (LiDAR) and photogrammetry 
point cloud (PPC)- LiDAR fusion.
Figure SI.3. Pearson correlation matrix of vegetation heights (m) 
measured using photogrammetry point cloud LiDAR fusion (PPC), 
photogrammetry stereomodels, TiTAN LiDAR and field measurements. 
N = 30	individual	trees	were	measured	using	all	four	methods.
Figure SI.4. State of vegetation on seismic lines and polygonal 
disturbances in the Chinchaga 1 study area block. From left to right, 
figures	depict	dominant	vegetation	type	on	500 m	sections	of	seismic	
line,	height	of	dominant	vegetation	type	on	500 m	sections	of	seismic	
lines, median height (m) on non- seismic human footprint features and 
density (trees/ha) on non- seismic human footprint features.
Figure SI.5. State of vegetation on seismic lines and polygonal 
disturbances in the Chinchaga 2 study area block. From left to right, 
figures	depict	dominant	vegetation	type	on	500 m	sections	of	seismic	
line,	height	of	dominant	vegetation	type	on	500 m	sections	of	seismic	
lines, median height (m) on non- seismic human footprint features and 
density (trees/ha) on non- seismic human footprint features.
Figure SI.6. State of vegetation on seismic lines and polygonal 
disturbances in the Chinchaga 3 block. From top to bottom, figures 
depict	 dominant	vegetation	 type	 on	 500 m	 sections	 of	 seismic	 line,	
height	 of	 dominant	 vegetation	 type	 on	 500 m	 sections	 of	 seismic	
lines, median height (m) on non- seismic human footprint features and 
density (trees/ha) on non- seismic human footprint features.
Figure SI.7. State of vegetation on seismic lines and polygonal 
disturbances	 in	 the	Caribou	Mountains	block.	From	 top	 to	bottom,	
figures	depict	dominant	vegetation	class	on	500 m	sections	of	seismic	
line,	height	of	dominant	vegetation	class	on	500 m	sections	of	seismic	
lines, median height (m) on non- seismic human footprint features and 
density (trees/ha) on non- seismic human footprint features.
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