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Abstract: Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae) is a defoliating pest in
Canada and the northeastern United States. Given its important ecological and economic effects
in affected regions, several direct management techniques have been developed, including the
application of the insect growth regulator tebufenozide (Mimic™, RH-5992) to feeding larval stages.
While the effectiveness of tebufenozide, in this capacity, is understood, management programs of
other lepidopteran pests have demonstrated the effectiveness of tebufenozide application when
utilized against other life stages. Here, we investigated the toxicity of topically-applied tebufenozide
to C. fumiferana pupae to determine if such a strategy could be feasible. We observed significant
dose-dependent decreases in the likelihood of adult emergence, increases in the likelihood of pupal
death or adult deformity at eclosion, and significant decreases in mean adult longevity. Estimated LD
50 (lethal dose) values for adult male and female C. fumiferana treated as pupae ≤ 4 days after pupation
were approximately 1–3 and 2–3.5% ACI (active commercial ingredient) respectively. Estimated L-SD
(lethal-sublethal) 50 doses for adult male and female C. fumiferana treated as pupae ≤4 days after
pupation were <1, and <2% ACI, respectively. Mating success was also significantly lower in mating
pairs containing adults treated as pupae. Although, the amounts required to cause appreciable pupal
mortality were much higher than those currently applied operationally in the C. fumiferana system,
our study illustrates the potential of tebufenozide to utilized against additional developmental stages
in other lepidopteran pests.
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1. Introduction

Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae) is a significant eruptive defoliator of
balsam fir [Abies balsamea (L.) Mill.] and white spruce [Picea glauca (Moench) Voss] in Canada and the
United States. The life cycle of this species is typically one-year in length [1,2]. Eggs are laid on foliage
beginning in mid- to late-summer with first-instar larvae hatching from eggs ~10 days afterwards.
First-instar larvae are primarily non-feeding, and form hibernacula within which they overwinter
and moult. Second-instar larvae emerge in the spring and establish themselves on 1-year-old foliage.
After moulting into a third-instar, they begin feeding on current-year foliage where available. Most
of the feeding damage that is associated with the larval stage is caused by late-instar larvae (L4–L6).
Larvae pupate within or in close association to feeding shelters constructed from shoots bound together
by silk, from which they emerge as adults. While males are active flyers, adult females will fly only
when most of their egg complement has been deposited. Large amalgamations of flying adults can be
dispersed by weather and storm fronts, leading to the movement of individuals and potential increases
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in local populations [3]. Tree defoliation by feeding larvae is dependent on a number of abiotic and
biotic factors. However, annual defoliation on shoots and flowers leads to reductions in radial growth,
height growth, and eventually top kill [1]. Affected trees are also increasingly susceptible to secondary
infestation by other insects, disease infection, and wind breakage [4,5]. In Atlantic Canada, outbreaks
may last for up to 15 years, with previous outbreaks affecting up to approximately 58 million hectares of
forested regions [3,6]. Defoliation of spruce/balsam fir forests in this region by C. fumiferana has recently
been increasing [7,8], with significant increases in both timber and economic losses being predicted for
provinces, such as New Brunswick [9]. Consequently, vigorous detection and management strategies
for monitoring and regulating C. fumiferana populations, with the goal of reducing and/or preventing
defoliation in vulnerable forest regions, have been initiated [8].

Several direct management strategies for reducing defoliation by C. fumiferana exist [1,8], including
the aerial application of the insect growth regulator (IGR) tebufenozide [10]. Tebufenozide is a
bisacylhydrazine ecdysteroid agonist that mimics natural ecdysone (20-hydroxyecdysone) within the
target insect [11,12]. When consumed by the larvae, tebufenozide binds to the ecdysone receptor in
the gut and initiates the moulting process. Unlike the initiation via natural ecdysone, this moulting
process is not completed, and is ultimately fatal, to the affected individual [11,13–15]. An advantage
of these agonists over traditional insecticides, such as organophosphates is their high specificity
against lepidopteran targets, while exhibiting low toxicity to non-targets from other orders [12,16].
Tebufenozide is toxic to numerous lepidopteran pests including Cydia pomonella (L.) (Lepidotera:
Tortricidae) [17], Lobesia botrana (Denis & Schiffermüller) [18], Lambdina fiscellaria fiscellaria (Guenée)
(Lepidoptera: Geometridae) [19], and Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) [20], and
has demonstrated its versatility as an effective insecticide in both, forest and agricultural environments.

The target C. fumiferana developmental stage for tebufenozide application is late-larval. Specifically,
significant mortality is limited to individuals between 0 and 3 days of the fifth-instar, and 0 and 2 days
of the sixth-instar [21], although fatal moulting occurs in older fifth-instar larvae upon moulting into
sixth-instar larvae. The aerial application of tebufenozide against later larval instars of C. fumiferana
has been consistently shown to significantly reduce both defoliation and mean number of larvae per
branch in treated stands [22–25]. Currently, our understanding of the effective mortality of direct
application of tebufenozide against other life stages is largely unknown. In other tortricids, including
C. pomonella (L). [26–28], Grapholita molesta (Busck) [29,30], Argyrotaenia velutinana (Walker) [31] and
Choristoneura rosaceana (Harris) [32,33], the application to non-target host stages can cause significant
reductions in both fecundity and fertility, and significant reductions in the ability of individuals to
locate potential mates. Such detrimental effects on C. fumiferana fitness may be important in lowering
populations and reducing defoliation in treated areas. The aim of our research was to determine the
effects of topical application of tebufenozide on C. fumiferana pupae of different age (1–5 days after
pupation) in relation to their metamorphosis into normal or deformed adults, and to longevity and
mating capacity of emerged adult. The results of our research provide important information regarding
the possible effectiveness of tebufenozide outside of its current utilization for C. fumiferana.

2. Materials and Methods

2.1. Insects and Bioassays

Second-instar ‘diapause strain’ laboratory-reared larvae (L2) (2018: GLFC:IPQL:Cfum CF6-F23,
F07, F08; 2019 GLFC:IPQL:Cfum F14, CF13 F23) [34] were obtained from the Insect Production Services
(IPS) of the Canadian Forest Service in Sault Ste. Marie, ON, Canada. Laboratory bioassays were carried
out from September 2018 to August 2019 at the Atlantic Forestry Center, New Brunswick Canada.
L2 were placed in a small plastic cup containing standard McMorran artificial diet [35]. Larvae fed on
diet until they reached pupation (approximately 2 weeks), at which time the pupae were removed
from diet cups, separated by sex, and placed in a glass Petri dish. Rearing conditions were 16hr:8hr
(day:night), constant 23 ◦C, and relative humidity (RH) of 40–70%. Pupae were separated by age (0–5
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days old) post pupation and were treated with tebufenozide (RH-5992 flowable formulation Mimic™-2F,
Rohm and Haas C., Spring House PA) to monitor its effects on development. The concentration of
active tebufenozide in this formulation was 24.3 µg/µL. For treatment pupae, 1 µL topical applications
containing 0.1, 0.25, 0.5, 1.0, 2.0, 5.0, 10.0, or 20% dilutions of active Mimic™-2F commercial ingredient
(ACI) were applied (Table 1). Dilutions were made in deionized water. Control pupae were treated with
1 µL of deionized water. A cohort of pupae was also treated separately with 1 µL of Triton-X solution
(7% Triton X-100 and 6% Glycerine in deionized water), the primary emulsifying ingredient in the
commercial Mimic™-2F compound. Each treatment X age combination, consisted of ≥ 10 individuals.
Treatments were applied using a glass syringe to the dorsal surface of the thorax. Following treatment,
pupae were held individually in polystyrine disposable Petri dishes (100 mm × 15 mm) lined with
filter paper. Insects were monitored daily until their death or emergence of the adult. The number
of adults who emerged with a wing deformity was recorded. Adult longevity was also recorded.
Surviving adults were placed in mating pairs in Petri dishes with a conspecific of an identical pupal
age of exposure and dose combination to investigate the effects of tebufenozide exposure on adult
fitness. For all mating pairs, the bursa copulatrix was dissected to determine the presence or absence
of a spermatophore after female death. Mating pairs were kept together until one or both of the insects
died (approx. 5–14 days). Adults were kept in environmental conditions identical to those described
for the larvae.

Table 1. Quantities of active tebufenozide ingredient diluted from RH-5992 flowable formulation
Mimic™-2F [24.3 µg/µL], Rohm and Haas C., Spring House PA in used in 1 µL topical applications on
C. fumiferana pupae.

Percent (%) Dilution 0.1 0.25 0.5 1.0 2.0 5.0 10.0 20.0

Active tebufenozide quantity (µg) 0.024 0.061 0.122 0.243 0.486 1.215 2.430 4.860

2.2. Statistics

Both the metamorphosis of the pupa into an apparently normal adult, and the death of the pupa
or its evolution into an adult with deformed wings, were distinctly treated for male and female pupae
as binary responses and were modelled with respect to the treatment and age of the pupa, at the time
of the treatment application, by logistic regression analysis. Where treatment was a significant effect in
these analyses, a subsequent logistic regression analysis where treatments were analyzed as levels
was completed to identify specific treatment doses where likelihood was significantly different from
the control groups. Sex-specific LD (lethal dose) and L-SD (lethal-sublethal dose) 50 and 90 values
for each age cohort were calculated using a 2-parameter dose-response model in the ‘drc’ statistical
package [36] in the ‘R’ programming language [37]. The effect of treatment on mean adult longevity
was analyzed using a two-way Analysis of Variance (ANOVA) considering treatment and pupa age at
treatment application as fixed factors. As there were few moths eclosing to adult after treatments > 2.0
ACI, only moths treated with 0%, 0.1%, 0.25%, 0.5%, and 1.0% ACI and Triton-X solution were included
in these analyses. Finally, a generalized linear model (‘glm’, link = “binomial”) also using treatments
and age at application as fixed factors was used to analyze the proportions of females containing a
spermatophore after placement within mating pairs. Insufficient numbers for analysis were found
in treatment groups ≥ 2% ACI. Therefore, this analysis only included treatment groups of ≤ 1% ACI
as well as Triton-X and control groups. Specific sample sizes have been included in the figures and
tables where applicable. These analyses were also carried out in the ‘R’ programming language [37].
An α = 0.05 was assumed as the level of significance for all statistical analyses.

3. Results

The likelihood of adult eclosion was significantly affected by the topical application of tebufenozide
to pupae in both male and female individuals (Figure 1, Table 2). Treatment applications of ≥ 1.0%
ACI and ≥ 2.0% ACI caused significant decreases in the likelihood of adult eclosion for males and
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females respectively (Figure 1, Table 3). There was also a significant effect of age on likelihood of
adult eclosion, with younger individuals less likely to eclose than older individuals. An interaction
between age and treatment for females was observed, with the likelihood to eclose to an adult being
slightly higher in 4–5-day old pupae treated with higher % ACI treatments than in younger (0–3-day
old) pupae (Figure 1, Table 3). The likelihood of an individual either failing to eclose to an adult or
eclosing to an adult with a deformity was also significantly affected by the application of tebufenozide
(Figure 1, Table 2). For males, significant reductions were observed in all groups ≥ 0.1% ACI except
0.25% ACI. Significant reductions for females occurred at 0.5% ACI and ≥ 2.0% ACI (Figure 1, Table 3).
There was no significant effect of age on the likelihood of failing to eclose to an adult or eclosing to an
adult with a deformity (Table 3).

Table 2. Main effects of tebufenozide dosage (% ACI) and pupal age at treatment on likelihood of the
adult eclosion of a normal adult and likelihood of pupal death/adult eclosion with a deformity in C.
fumiferana pupae. A ‘*’ represents a significant effect on likelihood (p = 0.05).

Adult Eclosion Adult Failed to Eclose/Deformed
Sex Effect t-Value p t-Value p

Male Age 2.708 0.007 * 1.611 0.108
Treatment −15.360 <0.001 * −10.899 <0.001 *

Age x
Treatment 2.223 0.026 * 1.024 0.306

Female Age 2.499 0.0126 * 1.870 0.0617
Treatment −16.565 <0.001 * −12.731 <0.001 *

Age x
Treatment 2.757 0.006 * 0.248 0.8043

Table 3. Effects of treatment dosage on a) likelihood of adult eclosion; and b) likelihood of pupal
death/adult eclosion with a deformity (Multiple logistic regression; ‘*’ represents a significant difference
in likelihood versus control (untreated) pupae (p = 0.05)).

Adult Eclosion Adult Failed to Eclose/Deformed

Sex Treatment t-Value p t-Value p

Male 0.1 −0.490 0.6246 −2.438 0.0150 *
0.25 0.447 0.6550 0.445 0.6563
0.5 0.490 0.6246 −4.389 <0.001 *
1.0 −3.427 <0.001 * −6.339 <0.001 *
2.0 −6.365 <0.001 * −9.265 <0.001 *
5.0 −9.303 <0.001 * −9.265 <0.001 *

10.0 −8.323 <0.001 * −8.290 <0.001 *
20.0 −9.303 <0.001 * −9.265 <0.001 *

Female 0.1 0.223 0.8238 0.185 0.8530
0.25 0.213 0.8313 0.177 0.8532
0.5 −0.846 0.3976 −2.484 0.0132 *
1.0 0.223 0.8238 0.185 0.8530
2.0 −8.329 <0.001 * −8.711 <0.001 *
5.0 −9.482 <0.001 * −11.378 <0.001 *

10.0 9.398 <0.001 * −7.822 <0.001 *
20.0 −10.467 <0.001 * −8.711 <0.001 *
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Figure 1. Age-specific proportions of C. fumiferana eclosing to an adult, eclosing to an adult with a
deformity, or not eclosing (‘did not eclose’, DNE) following treatment with Triton-X, water, or various
doses of tebufenozide (Mimic™). Age (indicated by 0, 1, 2, 3, 4, and 5 within figure) represents the
number of days after pupation at which the individual was treated. Numeric values above data bars
represent the number of individuals (‘n’) included in each treatment x age combination.

Estimated LD (lethal dose) 50 values for adult male and female C. fumiferana treated as
pupae ≤ 4 days after pupation were 1.093 ± 0.235 to 2.943 ± 0.601% AI and 4.225 ± 1.527 to 9.357 ±
3.087% AI for males and females respectively (Table 4). LD50 values for 5-day old pupal males and
females were higher (5.020 ± 1.192% ACI and 26.35 ± 19.19% ACI respectively). Estimated LD90 values
for males and females both increased with age, varying from 4.225 ± 1.527 to 9.357 ± 3.087% ACI and
7.230 ± 2.464 to 27.53 ± 15.65% ACI for males and females aged 0–4-day old respectively. Estimated
LD90 values for 5-day old pupae of both sexes were > 40% ACI. Estimated L-SD (lethal-sublethal)
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50 doses for males varied from 1.895 ± 0.742 to 4.168 ± 1.641% ACI in 0–4-day old pupae (Table 5).
L-SD90 for 5-day old pupae was higher (8.635 ± 4.700% ACI). L-SD90 values for 0–4-day old females
were higher than those for males (2.727 ± 0.855 to 9.724 ± 3.81% ACI). L-SD90 for female 5-day old
pupae was > 40% ACI.

Table 4. Estimated lethal dose (LD) (% ACI) to achieve 50 and 90% of mortality in C. fumiferana pupae
on which tebufenozide had been topically applied.

Age LD50 Lower Upper LD90 Lower Upper

Male 0 1.093 ± 0.235 0.633 1.554 4.225 ± 1.527 1.232 7.218
1 1.369 ± 0.292 0.798 1.941 5.122 ± 1.831 1.534 8.710
2 1.566 ± 0.312 0.955 2.176 5.700 ± 1.741 2.287 9.113
3 2.233 ± 0.738 0.786 3.680 7.773 ± 3.975 −0.019 15.56
4 2.943 ± 0.601 1.765 4.122 9.357 ± 3.087 3.307 15.41
5 5.020 ± 1.912 1.272 8.768 >40.00 NA NA

Female 0 2.153 ± 0.446 1.278 3.027 7.230 ± 2.464 2.401 12.06
1 1.980 ± 0.389 1.217 2.742 5.913 ± 1.899 2.191 9.635
2 2.452 ± 0.838 0.810 4.094 12.03 ± 6.551 −0.808 24.87
3 5.640 ± 1.778 2.156 9.124 19.58 ± 7.845 4.210 34.96
4 3.393 ± 0.820 1.786 5.000 27.53 ± 15.65 −3.137 58.20
5 26.35 ± 19.19 −11.26 63.96 >40 NA NA

Table 5. Estimated lethal-sublethal dose (L-SD) (%ACI) to achieve 50 and 90% pupal death/eclosed to
an adult with a deformity in C. fumiferana pupae on which tebufenozide had been topically applied.

Age LD50 Lower Upper LD90 Lower Upper

Male 0 0.397 ± 0.098 0.204 0.589 1.895 ± 0.742 0.440 3.350
1 0.511 ± 0.117 0.281 0.740 2.183 ± 0.815 0.585 3.781
2 0.687 ± 0.174 0.345 1.027 4.168 ± 1.641 0.952 7.384
3 0.888 ± 0.223 0.451 1.325 2.884 ± 1.494 −0.045 5.813
4 0.481 ± 0.102 0.280 0.681 1.729 ± 0.594 0.565 2.893
5 0.906 ± 0.268 0.381 1.431 8.635 ± 4.700 −0.578 17.85

Female 0 1.471 ± 0.312 0.860 2.081 5.373 ± 1.905 1.640 9.106
1 0.933 ± 0.177 0.585 1.281 2.727 ± 0.855 1.051 4.404
2 1.081 ± 0.291 0.508 1.653 3.416 ± 1.84 −0.195 7.027
3 2.295 ± 0.762 0.802 3.788 8.701 ± 4.47 −0.068 17.48
4 1.970 ± 0.347 1.291 2.650 9.724 ± 3.81 2.264 17.18
5 8.206 ± 4.485 −0.583 17.00 >40 NA NA

Male longevity was significantly affected overall by treatment (F4,335 = 37.045, p < 0.001), age
(F1,335 = 9.486, p = 0.002), and treatment x age (F4,335 = 2.615, p < 0.035) (Table 6). Female longevity
was significantly affected by treatment (F4,392 = 15.534, p < 0.001) and age (F1,392 = 6.794, p = 0.01).
Age-specific analyses showed the mean adult longevity in males was significantly lower in 1-, 2-, and
4-day old pupae treated with 0.25% ACI and 1.0% ACI. Significant reductions in mean longevity were
also found in 0-day old males treated with 0.5% ACI and 1.0% ACI, and 2-day old males treated with
0.5% ACI. Treatment did not significantly reduce mean longevity in 3- and 5-day old male pupae.
Mean female longevity was significantly reduced only in 3- and 5-day old pupae treated with 1.0%
ACI. The treatment of pupae with Triton-X solution was never observed to significantly lower mean
longevity when compared to untreated pupae.
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Table 6. Mean longevity of adult male and female C. fumiferana treated with tebufenozide solutions during pupal development. Age represents the number of days
after pupation at which 1µL of a tebufenozide solution was topically applied to the individual. An ‘*’ represents a mean longevity that is significantly lower than the
mean longevity of the associated control group (Tukey HSD pair-wise comparison, p < 0.05).

Triton-X Control 0.1%ACI 0.25%ACI 0.5%ACI 1.0%ACI

Age n x ± SE n x ± SE n x ± SE n x ± SE n x ± SE n x ± SE

♂ 0 10 6.25 ± 0.25 28 6.89 ± 0.318 9 5.66 ± 0.577 7 5.57 ± 0.649 9 2.44 ± 0.709 * 6 3.83 ± 0.792 *

1 10 6.4 ± 0.306 28 7.07 ± 0.388 9 7.0 ± 0.441 9 4.33 ± 0.577 * 9 5.44 ± 0.556 6 3.5 ± 1.15 *

2 10 6.2 ± 0.291 20 7.3 ± 0.411 10 6.6 ± 0.221 9 4.22 ± 0.434 * 8 4.12 ± 0.742 * 9 4.11 ± 0.841 *

3 10 6.5 ± 0.477 20 7.25 ± 0.369 10 5.4 ± 0.909 7 6.28 ± 0.359 9 5.11 ± 0.633 8 2.75 ± 0.366

4 10 6.8 ± 0.553 20 8.05 ± 0.569 10 6.5 ± 0.401 10 5.0 ± 0.699 * 10 5.7 ± 0.578 9 2.89 ± 0.754 *

5 10 7.1 ± 0.348 19 7.36 ± 0.514 10 6.2 ± 0.573 10 5.3 ± 0.597 9 6.55 ± 0.689 9 5.25 ± 0.648

♀ 0 10 11.3 ± 0.726 27 9.33 ± 0.591 10 8.1 ± 0.746 9 10.8 ± 1.04 9 9.0 ± 1.27 10 8.5 ± 1.27

1 10 9.5 ± 0.637 30 9.93 ± 0.738 10 10.7 ± 0.831 8 12.0 ± 1.31 9 9.11 ± 0.858 10 8.2 ± 0.706

2 10 10.1 ± 0.564 30 10.8 ± 0.498 10 11.2 ± 0.871 10 12.6 ± 0.895 8 10.0 ± 0.803 8 6.75 ± 0.749

3 10 10.9 ± 0.956 30 9.9 ± 0.297 10 9.9 ± 0.786 10 13.0 ± 0.778 10 10.2 ± 1.13 9 7.33 ± 0.707 *

4 10 12.1 ± 0.567 30 10.6 ± 0.80 10 10.4 ± 0.862 10 11.0 ± 0.817 9 10.0 ± 1.03 9 9.3 ± 0.604

5 10 10.9 ± 0.809 29 11.0 ± 0.658 10 10.7 ± 0.813 9 12.8 ± 0.852 9 11.1 ± 0.971 9 6.89 ± 1.31 *
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Statistical analysis showed no significant effect of age at application on the likelihood of females
containing a spermatophore (t = −0.362, p = 0.7175). However, the likelihood of a female containing a
spermatophore, after being placed in a mating pair with a conspecific male, was significantly reduced
in all pairs where both insects had been treated with tebufenozide versus proportions associated
with the control group (t = −6.723, p < 0.001) Factorial analysis indicated that significant reductions
occurred in all groups containing treated individuals (Figure 2). There was no significant difference in
the likelihood of females, containing a spermatophore for insects treated with Triton-X compared to
untreated insects.
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Figure 2. Proportion of adult C. fumiferana females containing a spermatophore after being paired with
an adult male of an identical treatment dose. Numerical values above the bars represent the sample
sizes (‘n’) for each treatment group. An ‘*’ represents a significant difference in the likelihood of a
female containing a spermatophore as compared to the ‘control’ group (Generalized linear model,
family = “binomial”, p < 0.05).

4. Discussion

The topical application of tebufenozide to pupae resulted in significant increases in the likelihood
of individuals failing to eclose to an adult, or eclosing to an adult with a deformity. We also
observed significant decreases in mean adult longevity, and reductions in the likelihood of male-female
pairs successfully mating. The current utilization of tebufenozide is its application to C. fumiferana
populations where the feeding larval stage is present. The effectiveness of tebufenozide against
C. fumiferana larvae is well established [13,14,21,23,25]. However, the novel and important information
presented here demonstrate the versatility of the larvicide tebufenozide as a topical insecticide against
other lepidopteran life stages.

Treatment of male and female pupae resulted in significant reductions in the likelihood of
adult eclosion, and the increased in the likelihood of adult eclosing with wing deformities or death.
Sundaram et al. [36] analyzed the rates of pupal death in individuals intrahoemically injected with
varying amounts of tebufenozide, and similarly found a dose-dependent relationship. The same authors
also observed increases in the number of adults emerging with wing deformities, including increased
disruption of wing scale deposition, and degeneration of wing epithelial cells [38]. Macro-level
comparisons of deformed adults in this study showed a resemblance with those of Sundaram et al. [37],
suggesting similar deformation modalities. Histological analyses are necessary to confirm if cellular
deformities are consistent between these studies. The possession of wing deformities can have a
negative effect on individual fitness, as deformed adult moths, specifically males, require the ability to
engage in sustained flight to locate calling conspecific females. An inability to engage in flight and locate
females can significantly affect a moth’s fitness. Dispersion is also an important ability for females to
utilize after her egg compliment has been depleted if she is to locate suitable oviposition sites [3]. Wing
deformation induced by exposure to insect growth regulators is not limited to C. fumiferana, as such
effects have been observed in Manduca sexta (L.) (Lepidoptera: Sphingidae) [39], Platynota idaeusalis
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(Walker) (Lepidoptera: Totricidae) [40], and Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) [41].
Interestingly, both [10] and [32] observed that surviving adult C. fumiferana exposed to tebufenozide as
larvae rarely had wing deformities. It is possible that dosages used in both our study and [37] were
higher than those used in larval bioassays, resulting in higher numbers of deformed adults versus
those observed in larval-focused studies.

While some studies have shown similar impacts on adult longevity, such as in Ephestia kuehniella
Zeller (Lepidoptera: Pyralidae) [42] and S. littoralis [43], other studies analyzing longevity in surviving
individuals have provided mixed results. In some cases, mean adult longevity may not be significantly
affected by exposure [44], while in others, longevity may be significantly increased [45]. The mechanism
by which adult longevity is lower in exposed individuals was not quantified in this study. However,
the aforementioned disruptions to scale deposition and epithelial cell formation on the wings
demonstrate that important effects on normal adult cuticle formation can be induced during pupal
exposure. A closer inspection of adult scale deposition on the body, in treated individuals could
identify potential factors related to cuticle formation, that may be related to reduced adult longevities.

Proportions of females, containing a spermatophore after being paired with a male of similar
age and tebufenozide treatment, were significantly lower than females in mating pairs containing
either untreated insects or those treated with Triton-X solution. This reduction in mating success
agrees with predicted and observed mating success (also denoted by the number of females containing
a spermatophore) in C. fumiferana adults treated as larvae as previously determined [11]. While,
the mechanism by which mating success was disrupted was not determined in our study, or by
Dhadialla et al. [11], other research suggests that applications to adult males cause a disruption in
their ability to locate conspecific females. Hassan et al. [45] observed that adult male C. pomonella
treated with another insect growth regulator, methoxyfenozide, were less responsive to calling adult
females and synthetic pheromone sources. Consequently, these males mated significantly less than
untreated adult males. Similar effects have been seen Grapholita molesta (Busck) [30], and Argyrotaenia
velutiana (Walker) (Lepidoptera: Tortricidae) [33]. Another possible explanation may be a disruption to
male spermatogenesis following exposure during the immature stages. In the noctuid Spodoptera litura
Fabricius [46], treated males were found to have significant decreases in sperm production, including
lower amounts of apryne and eupryne sperm being released into the reproductive tract. The transfer of
sperm bundles to females during mating was also significantly reduced. Similar disruptions in sperm
release after treatment with tebufenozide in adult males have also been observed in Lymantria dispar
L. (Lepidoptera: Lymantriidae) [46]. Such effects on spermatogenesis and/or sperm transfer may be
occurring in C. fumiferana, though further research is necessary to determine this.

The ingestion of ≤ 0.03 and 0.06 µg per individual has been demonstrated to cause approximately
50%, and 90% mortality in sixth-instar, respectively [47]. Our results demonstrate that the topical
application of tebufenozide requires amounts of active ingredient per individual four to eight times
higher than those for larvae, in order to cause significant increases in pupal death. This precludes the
possibility of tebufenozide application to pupae based on economic considerations alone. The direct
consumption of the tebufenozide has been shown to be significantly more effective in ensuring a lethal
dose is transmitted to the insect than topical application [45]; however, we observed that doses < 0.03
µg per insect were sufficient to disrupt mating in individuals exposed as pupae. Although, lower
than the amounts necessary to theoretically prevent adult eclosion from a C. fumiferana pupae, the
sublethal application of a compound, such as tebufenozide may possibly have similar effects on future
L2 counts given that oviposition is similarly reduced, compared to directly eliminating the adult cohort.
Interestingly, topical applications of tebufenozide dissolved in an aqueous solutions caused no larval
mortality even up to 10 µg per insect [45], while we observed significant increases in pupal mortality
and/or adults with deformities at 0.024–0.486 µg per insect. This suggests that C. fumiferana pupae may
be more vulnerable to topical application than larvae. However, the application of a lethal or sublethal
dose will be hindered by the likelihood of pupae residing within protected feeding shelters on the host
tree. In combination with the economic costs associated with increased amounts required with an aerial
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application, it is clear that tebufenozide applications to pupae, with the goal of causing additional
compensatory mortality, is not feasible. These results do, however, provide an additional example of
IGRs being lethal to life stages beyond the target larvae. Our results, while not applicable within the
C. fumiferana system, may be of importance in ascertaining the potential versatility of tebufenozide and
IGRs in other population management programs involving lepidopteran pests.

5. Conclusions

Our results demonstrate that topical application of tebufenozide can cause reductions in adult
emergence from treated pupae and increases in the incidence of emerging adults with deformities.
Emerging adults topically treated as pupae also had reductions in mating success and some significant
decreases in mean longevities when compared with untreated individuals. While the practical aspects
of direct topical tebufenozide application to C. fumiferana are not economically feasible given the higher
amounts required to effectively treat individuals and the largely protected pupal stage, this research
serves as an important example of the potential applicability of insect growth regulators when applied
to additional host stages of a target tortricid pest species.
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