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ABSTRACT

Monitoring of reclaimed sites is a complex, interdisciplinary undertaking, especially in large, disturbed
areas with difficult access. In that context, remote sensing is a unique and valuable tool that provides a
synoptic view of an entire reclamation program and its progress over time, extending the more detailed
but sparsely distributed in situ monitoring. Using remote sensing data, we are creating reclamation maps
that provide easily understood information about a site’s vegetation history, and whether or not it has
reached and maintained biomass above the permit threshold for self-sustaining status. These maps are
produced at various scales, are Geographic Information Systems (GIS) compatible, and often provide data
for remote, inaccessible locations or for locations where historical data are missing. Reclamation maps
are designed to help decision-makers focus remediation efforts on specific locations most needing it,
rather than making unnecessary and potentially costly wholesale changes to entire sites. The maps are
useful, not only in reclamation and multidisciplinary studies, but also in public demonstration of
industry’s successful reclamation practices. As climate in the north continues to change, and resource
exploration and extraction activities increase, mapping the changing landscape becomes key for the
conservation and sustainable management of resources. In this paper, we present two examples of long-
term remote sensing monitoring at reclaimed mine sites in British Columbia and one of long-term
vegetation changes in the Northwest Territories. Other applications of remote sensing are also discussed,
such as the generation of habitat maps for wetland monitoring at reclaimed tailings ponds in support of
wildlife habitat or biodiversity studies. Examples of field applications of remote sensing will be
presented in a companion poster entitled “Practical field uses of remote sensing.”
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INTRODUCTION

Reclamation is a central part of the decommissioning of mining operations, and requires monitoring of re-
vegetated areas to assess the progress toward the end land use objectives, as well as to determine whether
individual sites have achieved a self-sustaining state. Traditional in sifu monitoring programs provide
very detailed information on selected sampling sites, but ground-based surveying of entire reclaimed
areas and hard-to-reach sites can prove to be a difficult, many times impossible, task.

Remote sensing, whether from aircraft or satellites, is a practical tool that provides continuous maps of
vegetation changes over time for entire mine sites, supplementing the more detailed but less synoptic
ground biological surveys. It provides a means to focus remediation efforts on specific locations that need
it most, instead of making wholesale changes to entire sites (Borstad et al. 2005; Martinez et al. 2012;
Richards et al. 2003), and is also a valuable tool for monitoring and quantifying a wide array of
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biophysical changes attributed to climate change in northern ecoregions (Borstad et al. 2008; Laidler et al.
2008).

METHODS

Remote Sensing Data

The high spatial resolution, together with the flexibility of spectral configuration and acquisition timing
characteristic of airborne systems, make them ideal for reclamation monitoring (Borstad et al. 2005).
Recently satellites have seen improvements in spatial resolution in particular that make them a less
expensive alternative; however this reduction in cost comes at a significantly increased risk, since satellite
surveys are more affected by cloud than those from aircraft that can be more readily adapted to avoid or
operate under cloud (Borstad et al. 2005).

In this paper we present examples of data obtained with the Compact Airborne Spectrographic Imager
(CASIJ) configured to acquire imagery in 9 spectral bands at 2.5 m spatial resolution (Borstad et al. 2005;
Brown et al. 2006; Martinez et al. 2011; Richards et al. 2003), as well as from satellites such as Landsat,
and QuickBird2 (QB2) and WorldView-2 (WV2) (Digital Globe 2012). The free data from the Landsat
series, launched in 1972 and extended with the successful launch of Landsat 8 in 2013, provides
consistent global coverage (GLOVIS 2013). WV2 and QB2, launched in 2009 and 2011 respectively,
provide higher spatial and spectral resolution than the Landsat series; however they are not free, and must
be specifically tasked to acquire imagery over any particular target. Their short historical catalogue
makes them less useful for long-term analyses, but their higher spatial resolution makes them better suited
to study smaller areas in more detail.

Land Vegetation Indices

For land vegetation studies we use two vegetation indices derived from reflectance data for both airborne
and satellite imagery (Table 1). The Normalized Difference Vegetation Index (NDVI) is commonly used
in remote sensing as an index that provides a measure of green vegetative cover or biomass (Pefiuelas and
Filella 1998; Tucker 1979). Our ‘Normalized Yellow Index’ (NYI) provides an index of desiccation
and/or senescence (Borstad Associates 2006).

Table 6. Calculation of vegetation indices and interpretation.
Index Formula Interpretation
NDVI (Infrared — Red)/(Infrared + Red) < 0 unvegetated, > 0 vegetated (1 maximum)
NYI (Green — Red) / (Green + Red) < 0 dry or senescent, > 0 green sparse to dense (1 maximum)

NDVI is a measure of plant chlorophyll. Red reflectance (near 660 nm) from healthy green vegetation is
low because of light absorption by photosynthetic pigments, mainly chlorophylls, whereas a plant's
spongy mesophyll leaf structure creates considerable reflectance in the near infrared region of the
spectrum. NDVI can be calibrated to apparent biomass, as shown in Figure 1, but NDVI plateaus at high
biomass values (Figure 6), and it can also be affected by disease, flowering, and water availability (Carter
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and Knapp 2001; Wang et al. 2001; Yin and Williams 1997). We developed the Normalized Yellow
Index (NYI) to assist differentiating the low NDVI values caused by chlorophyll degradation from those
caused by moderate or sparsely vegetated green areas (Borstad Associates 2006). As plants lose
chlorophyll, red reflectance (near 660 nm) values increase, thus NYI compares spectral bands in the green
(560 nm) and the red wavelengths, having positive values for dense green vegetation, and negative values
for yellowish vegetation.
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Figure 6.  NDVI calibration to apparent biomass.

Multi-temporal Analysis

To assess vegetation changes over time, we build time series datasets using the annual NDVI images, and
classify them using an unsupervised algorithm (ISODATA), which groups similar NDVT histories into up
to 255 statistical classes. Pixels with similar trends are then grouped manually (Borstad et al. 2009;

Martinez et al. 2012) to create maps of reclamation status (see Figure 2). As described above, NYI data
are used to assist to interpret low NDVI values, as are photographs and visual observations when
available.

Another way that we use NDVI time series is to assess long-term trends in vegetation, such as those
associated with climate change. Changes of this nature are evaluated using regressions of NDVI versus
year (see Figure 3). The images of r* and slope allow us to map the rate and direction of change and its
level of statistical significance. Maps of regression slope clearly delimit regions of positive and negative
change as well as their magnitude, facilitating interpretation of the underlying factors, as well as
permitting the calculation of such statistics as area of habitat loss. It is important in any vegetation
monitoring program to understand the long-term context within which reclamation efforts are conducted.

Mapping Aquatic Habitat

Different habitat types can be characterized from remote sensing imagery based on the optical properties
of the vegetation types present (communities or species), as well as the non-biological components.
These optical properties need to be considered when selecting the remote sensing data type, processes and
techniques. Aquatic habitat mapping presents a special case, as the vegetation has unique spectral
properties due to the modulating effect of water. For this reason airborne sensors, with their flexible
spectral configurations, are often used for aquatic applications. Specific bandsets can be used to extract
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information for aquatic vegetation and water quality parameters such as turbidity, and phytoplankton
blooms.

The techniques used for aquatic mapping differ somewhat from terrestrial applications because of the
unique spectral properties of the vegetation.  For example, instead of NDVI used for terrestrial
vegetation, for aquatic vegetation we use an index referred to as Shifted Red Peak Height (SRPH). Like
NDVI, this index measures the height of the near infrared reflectance near 700 nm that occurs in spectra
of all multicellular plants. In aquatic environments, where longer wavelengths are strongly attenuated by
water, this near infrared “plateau” becomes a “red peak” when vegetation is covered by water, thus
providing an unambiguous indication of aquatic vegetation (see Figure 4A2).

EXAMPLES

Long-Term Changes at Reclaimed Mine Sites

We have been monitoring reclaimed areas at a large copper mine using aerial remote sensing since 2001.
The time series has permitted a variety of analyses that are being used in the management of the
reclamation program. The trends in annual NDVI (Figure 2) and apparent biomass demonstrate the
history of the reclamation at each site, and more importantly, clearly delimit the extents of areas that have
reached a biomass above 1500 kg/ha (‘Rapid growth’; green in the reclamation map), the accepted
reclamation threshold in this case. The analyses also show which areas considered successfully reclaimed
are subject to desiccation (shown in yellow) and those requiring additional intervention (‘Limited cover’
shown in red).
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Figure 7. Reclamation map and 2001-2012 vegetation trends at a reclaimed mine site.
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Vegetation Trends at Anderson River Delta, NWT

The primary objectives of this study (Figure 3A) were to quantify reports of habitat loss in the Anderson
River Delta and identify areas that had been impacted. Analysis of four large regions of interest (ROIs)
showed that the largest reductions in vegetation cover occurred in the Outer Islands between 1972 and
2003 (Figure 3B), with an NDVI decline of 38% during the study period, corresponding primarily to
areas most heavily used by nesting Lesser Snow Geese and Black Brant (Armstrong 1995; Kerbes et al.
1999).
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Figure 8. Vegetation changes over 31 years in four regions of interest (ROIs) in the Anderson River Delta.
The Western Delta ROI showed a 12% decline in vegetation over the study period, while further inland,

the Inner Delta showed little vegetation loss. The Uplands had a statistically significant increase in NDVI
over time, which agreed well with results from other studies in North America and Eurasia for the same
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time period (Jia et al. 2003; Jiang et al. 2011; Verbyla 2008; Walker et al. 2012). The changes seen in the
satellite time series were confirmed by qualitative reports (Armstrong 1995; Barry 1967).

Mapping Wetland Habitat

Tailings ponds can be converted to functional wetlands once water levels are stabilized, but they are often
treacherous to traverse. This severely limits ground-based sampling, and presents a hurdle to clear
understanding of the ecology and evolution of the reclamation. For such water bodies, remote sensing
provides an alternative means of detecting and monitoring submerged vegetation. The pond shown in
Figure 4A has very soft tailings, and had developed channels where streams of bubbles created holes 4 to
10 m in diameter and several metres deep (photo shown in Figure 4A1, taken on the northwest shore),
preventing access even from small boats. The airborne imagery (Figure 4A) revealed large amounts of
submerged aquatic vegetation in the center of the pond. The discovery of Ruppia maritima, was a
complete surprise to the limnologists (Borstad et al. 2005). As well as detecting Ruppia, the maps of
aquatic plant distribution helped to quantify the success of the aquatic reclamation program. Twelve
milfoil and aquatic buttercup plant sandwiches had been installed 1996, and in seven years the plants had
expanded to cover 13 hectares in low density weed beds, with occasional high density milfoil patches
(Larrat Aquatic 2003).
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Figure 9. Aquatic plant distribution in a reclaimed tailings pond derived from multispectral CASI imagery

CONCLUSIONS

Remote sensing maps are more than just pretty pictures; they are valuable tools for monitoring and
quantifying biophysical changes (Borstad et al. 2008; Lantuit and Polland 2008; Verbyla 2008; Walker et
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al. 2005). Aerial remote sensing surveys can be optimized using specific spectral bands to acquire
information for vegetation changes in a variety of habitats. Long-term series imagery from aerial or
satellite sensors support many kinds of land and water quality monitoring studies, and help to understand
where and what changes have taken place, and to quantify the rate of change. Recent cost reductions of
remote sensing data have also made this tool more accessible to non-profit groups and other small,
independent interests.
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NORTHERN LATITUDES MINING RECLAMATION WORKSHOP

The Northern Latitudes Mining Reclamation Workshop is an international workshop on mining, land and
urban reclamation and restoration methods. The objective of the workshop is to share information and
experiences among governments, industry, consultants, Alaska Natives, northern First Nations and Inuit
groups which undertake reclamation and restoration projects, or are involved in land management in the
north or in comparable environments.

The first Workshop was held in Whitehorse, Yukon Territory, Canada in 2001 and it has been held every
two years since, alternating between Canada and Alaska. The primary sponsors of the Workshop include
the Yukon Geological Survey, Indian and Northern Affairs Canada, Natural Resources Canada, US

Department of the Interior Bureau of Land Management, and the State of Alaska Department of Natural
Resources.

CANADIAN LAND RECLAMATION ASSOCIATION

The CLRA/ACRSD is a non-profit organization incorporated in Canada with corresponding members
throughout North America and other countries. The main objectives of CLRA/ACRSD are:

e To further knowledge and encourage investigation of problems and solutions in land reclamation.

e To provide opportunities for those interested in and concerned with land reclamation to meet and
exchange information, ideas and experience.

e To incorporate the advances from research and practical experience into land reclamation
planning and practice.

e To collect information relating to land reclamation and publish periodicals, books and leaflets
which the Association may think desirable.

e To encourage education in the field of land reclamation.

e To provide awards for noteworthy achievements in the field of land reclamation.
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