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A B S T R A C T

Across fifty-eight boreal caribou study areas in Canada, survival and recruitment decrease with the percentage of 
the study area that is disturbed. There is variation in demographic rates among study areas, particularly where 
anthropogenic disturbance is low, but no populations inhabiting areas with high anthropogenic disturbance are 
considered viable. Demographic projections derived from local population-specific data are uncertain for pop-
ulations with limited monitoring. We propose a simple Bayesian population model that integrates prior infor-
mation from a national analysis of demographic-disturbance relationships with available local demographic data 
to improve population viability projections, and to reduce the risk that a lack of local data will be used as a 
reason to delay conservation action. The model also acknowledges additional uncertainty and potential bias due 
to misidentification of sex or missing calves, through a term derived from a simple model of the recruitment 
survey observation process. We combine this Bayesian model with simulations of plausible population trajec-
tories in a value of information analysis framework to show how the need for local monitoring varies with 
landscape condition, and to assess the ability of alternative monitoring scenarios to reduce the risk of errors in 
population viability projections. Where anthropogenic disturbance is high, reasonably accurate status projections 
can be made using only national demographic-disturbance relationships. At lower disturbance levels where 
initial uncertainty is high local data improve accuracy but each additional year of monitoring provides less new 
information. The estimated probability of viability indicates whether more information is needed to improve 
accuracy of population viability projections.

1. Introduction

The number of species threatened with extinction is high and getting 
higher (IPBES, 2019). Reliable information on the status of populations 
and likely impacts of management are needed to inform conservation 
action, but effective monitoring is challenging and costly (Dunham 
et al., 2023; Legg and Nagy, 2006; Lindenmayer and Likens, 2018; 
Wintle et al., 2010). Resources to support conservation and recovery are 
limited (Buxton et al., 2022; Gerber, 2016; McCarthy et al., 2012; Wintle 
et al., 2019), delays in action increase risk (Martin et al., 2012), and 
some populations have been monitored to extinction (Lindenmayer 
et al., 2013). A recent analysis of action plans for Canadian species at 
risk found that half of recovery actions are research and monitoring, and 
this proportion is highest for species with higher risk of extinction, 

highlighting a need to more carefully consider when, where, and why 
additional information is needed to inform conservation action (Buxton 
et al., 2022). Analysis of the implications of monitoring outcomes can 
help to clarify whether additional monitoring is necessary to inform 
conservation action (Bennett et al., 2018; Dunham et al., 2023; Gregory 
et al., 2012; Runge et al., 2011).

Boreal caribou are widely and sparsely distributed through the Ca-
nadian boreal region across a gradient of anthropogenic disturbance 
(ECCC, 2011; Johnson et al., 2020) that includes some of the most intact 
and inaccessible places remaining on earth (Hirsh-Pearson et al., 2022; 
Ibisch et al., 2016; Venter et al., 2016). Across 58 boreal caribou study 
areas, both survival and recruitment decrease with the percentage of the 
area that is disturbed, and no populations inhabiting areas with high 
anthropogenic disturbance are considered viable, defined as a 
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population experiencing stable or positive growth (≥0.99) in the 
absence of interventions such as predator control or maternal penning 
(ECCC, 2011; Johnson et al., 2020). We acknowledge that other con-
siderations such as population size are important, but our focus in this 
analysis is population growth rate. Identifying populations that are 
declining is important for clarifying where and when conservation ac-
tion is needed. Disturbance affects caribou demography both through 
direct impacts on habitat availability and use, and indirect impacts on 
predators and alternate prey (ECCC, 2011; NBCKC, 2022a). Decreasing 
recruitment with increased disturbance has also been observed over 
time where historic demographic data exist (Hervieux et al., 2013; 
Rudolph et al., 2017), but many places lack sufficient data to charac-
terize local demographic-disturbance relationships (Johnson et al., 
2020). There is also variation in demographic rates among study areas, 
particularly where anthropogenic disturbance is low (Fortin et al., 2017; 
Gagné et al., 2016; Johnson et al., 2020; Neufeld, 2021), which leads to 
uncertainty in projections that rely only on national-scale relationships 
(Dyson et al., 2022; Stewart et al., 2023).

Analysis methods that can make better use of available monitoring 
data to inform conservation decisions include Bayesian population 
modelling (Schaub and Kery, 2021) and value of information analyses 
(Bennett et al., 2018; Dunham et al., 2023; Gregory et al., 2012; Runge 
et al., 2011). For sparsely monitored populations, incorporating prior 
information from elsewhere can help reduce uncertainty (Drummond 
et al., 2018; Parlato et al., 2021; Tufto et al., 2000). Various efforts have 
been made to improve caribou population viability projections +++and 
growth rate estimates using Bayesian methods (Dalgarno et al., 2024; 
Eacker et al., 2019; Lamb et al., 2024; McNay et al., 2022; Moeller et al., 
2021). An advantage of Bayesian demographic models is that they ac-
count for multiple sources of uncertainty (Eacker et al., 2017; Schaub 
and Abadi, 2011; Schaub and Kery, 2021). However, Bayesian caribou 
population models developed to-date (Dalgarno et al., 2024; Eacker 
et al., 2019; Lamb et al., 2024; McNay et al., 2022; Moeller et al., 2021) 
have not included prior information about the observed distribution of 
demographic rates across the country that could reduce uncertainty 
about the status of poorly monitored populations.

Here, we offer a simple Bayesian population model for boreal caribou 
(Rangifer tarandus caribou) that integrates prior information about the 
impacts of landscape change (i.e. demographic-disturbance relation-
ships in Johnson et al., 2020) with available demographic data to reduce 
uncertainty in population viability projections. We also offer a novel 
method of acknowledging and accounting for errors in composition 
surveys. Following a value information analysis framework for conser-
vation status assessments (Dunham et al., 2023), we combine this 
Bayesian model with simulations of plausible population trajectories 
(Dyson et al., 2022; Stewart et al., 2023) to (i) show how the value of 
local monitoring varies with landscape condition, and (ii) assess the 
ability of alternative monitoring scenarios to reduce the risk of errors in 
population viability projections.

Our proposed model represents an important improvement over less 
formally integrated methods for estimating and projecting impacts of 
disturbance on population viability (ECCC, 2011; Johnson et al., 2020) 
because it accounts for uncertainties in both local data and 
demographic-disturbance relationships. We show that integrating the 
most informative predictor of outcomes for boreal caribou across their 
range can substantially reduce uncertainty in local demographic pro-
jections and improve the accuracy of population viability projections on 
changing landscapes. This approach can help clarify where available 
information is – and is not – sufficient for assessing and projecting 
population viability, and thereby reduce the risk that uncertainty is used 
as a reason to delay conservation action for imperiled populations 
(Bissonnette and Teitelbaum, 2020; Boan et al., 2018). Our approach is 
tailored to boreal caribou, but could be adapted for other species at risk 
found in multiple populations that are costly to monitor and sensitive to 
habitat disturbance.

2. Methods

2.1. Overview of methods and notation

To investigate how the accuracy and precision of predictions vary 
with both landscape condition and monitoring effort, we analyze 
simulated data using a Bayesian model with informative priors (section 
2.4) and a composition survey bias term (section 2.1). Steps in our 
analysis procedure include defining anthropogenic disturbance and 
monitoring scenarios (section 2.2), simulating population dynamics and 
monitoring (section 2.3) to produce example demographic trajectories 
for each scenario, and analyzing example demographic trajectories with 
a Bayesian model that enables integration of (simulated) local de-
mographic data with prior knowledge of demographic-disturbance re-
lationships (section 2.4). Outcomes of interest include expected 
population growth rate, the probability of correctly assessing population 
status, the posterior probability of population viability, and the expected 
value of local information (section 2.5). We refer to the model used to 
simulate example trajectories as the “national” model because parame-
ters are from a national analysis of demographic-disturbance relation-
ships (Johnson et al., 2020). We distinguish this national model from the 
Bayesian model that is used to analyze simulated example demographic 
trajectories. Where appropriate the national model and the Bayesian 
model share the same structure, and we have selected notation to 
highlight the similarities. Bayesian model estimates are distinguished 
from observed values, estimated expected values, true values, and true 
expected values using ̂ ̃ ˙ and symbols respectively; for example, St is 
the Bayesian estimate of survival in year t, Ŝt is observed survival, S̃t is 
the Bayesian estimate of expected survival (without stochastic interan-
nual variation), Ṡt is true survival, and St is true expected survival 
(without stochastic interannual variation). For reference, all variables 
and parameters are defined in supplemental Table A1.

2.2. Caribou population monitoring data and composition survey errors

The most widely available source of boreal caribou demographic 
information is from cows fitted with telemetry collars (e.g. Courtois 
et al., 2003; DeCesare et al., 2012; Hervieux et al., 2013; Rettie and 
Messier, 1998), though genetic methods are playing an increasingly 
important role in some caribou monitoring programs (e.g. Flasko et al., 
2017; Hettinga et al., 2012; Jones et al., 2023; McFarlane et al., 2018, 
2021, 2022; Moeller et al., 2021). Caribou cows are typically captured 
via net-gun from aircraft in late winter, and affixed with collars that send 
a mortality signal when no longer active (see NBCKC, 2021a), thus 
allowing estimation of adult survival (e.g. Dalgarno et al., 2024; Eacker 
et al., 2019; Hervieux et al., 2013; Lamb et al., 2024; McLoughlin et al., 
2003). Recruitment is estimated from aerial surveys of the composition 
of groups of animals that include collared animals (NBCKC, 2022b). 
Groups typically also contain uncollared animals, and a critical 
assumption in these surveys is that different demographic groups are 
equally detectable (Ellington et al., 2020). Errors that can bias compo-
sition survey results include misidentifying young bulls as cows or vice 
versa, and failing to detect calves (DeCesare et al., 2012; Ellington et al., 
2020). Survival and recruitment survey data can be combined in a 
simple recruitment-mortality population model (Hatter, 2020; Hatter 
and Bergerud, 1991) that serves as the basis for many herd viability 
assessments (Dalgarno et al., 2024; DeCesare et al., 2012; Eacker et al., 
2019; ECCC, 2011; Johnson et al., 2020; Serrouya et al., 2017).

While we believe that using available information to reduce uncer-
tainty is important, we also believe it is important to acknowledge 
remaining uncertainty. In general, parametric Bayesian population 
models include a number of simplifying assumptions, and misspecified 
models can yield biased or overconfident results (Schaub and Kery, 
2021). More specifically, models that do not account for observation 
errors can be misleading (Schaub and Kery, 2021). Although several 
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authors have pointed out that misclassification of adults and missing 
calves in composition surveys can bias recruitment estimates from those 
surveys (DeCesare et al., 2012; Ellington et al., 2020), none have thus far 
integrated these sources of error into Bayesian caribou population 
models (Dalgarno et al., 2024; Eacker et al., 2019; Lamb et al., 2024; 
McNay et al., 2022; Moeller et al., 2021). We address this gap with a bias 
term derived from a simple model of the recruitment survey observation 
process.

To derive a composition survey bias term we assume each group of 
animals in a calf:cow composition survey contains one or more collared 
adult females (T), and may also include: uncollared adult females mis-
identified as young bulls or unknown sex (U); correctly identified 
uncollared adult females (V); young bulls correctly identified as male or 
unknown sex (O); young bulls misidentified as uncollared adult females 
(P); observed calves (J); and unobserved calves (K). The apparent 
number of adult females in the group is T+ V+ P = Tw, where w is the 
observed ratio of the apparent number of adult females to collared an-
imals in the recruitment survey. The ratio of young bulls to uncollared 
adult females in the group is q = (P + O)/(U + V). Assuming an equal 
probability u of misidentifying young bulls as adult females and vice 
versa, we get V = (U + V)(1 − u) and P = (O + P)u. Given a probability 
z of missing calves, we get J = (J + K)(1 − z). Given these assumptions 
and definitions, the sex and bias-adjusted recruitment rate X can be 
written as a function of the observed calf:cow ratio R, the cow multiplier 
w, the ratio of young bulls to uncollared adult females q, and the 
misidentification probabilities u and z (see Supplement B for details). 
For simplicity, we combine the probabilities into a bias term c that is 
integrated into the national simulation model (section 2.4) and the 
Bayesian model (section 2.5): 

c =
w(1 + qu − u)

(w + qu − u)(1 − z)
;X = cR

/
2. (1) 

2.3. Anthropogenic disturbance and monitoring scenarios

In simulated monitoring scenarios, we assume collars are deployed in 
January, and continue to function for up to 6 years. The target number of 
collared females n varies among scenarios, as does the total duration of 
the monitoring program d and the ratio of observed adult females to 
collared animals in the recruitment survey w (Table 1). Collars lost to 
mortality may be replaced each year (o = 1), or there may be a 3 year 
gap between deployments (o = 4).

We focus on exploring a set of scenarios in which anthropogenic 
disturbance, measured as the percentage of area within 500 m of some 
type of anthropogenic disturbance (ECCC, 2011; Johnson et al., 2020), 
increases by 1 % per year (Fig. 1). The duration of monitoring prior to 
the projection period varies among scenarios from 1 to 24 years. The 
projection period begins in 2024, and we consider how uncertainty 
changes as the projection period increases from 5 to 20 years. The 
amount of anthropogenic disturbance at the beginning of the projection 
period varies from low (0 %) through medium-low (20 %) and medium- 
high (40 %) to high (60 %). These simple hypothetical scenarios span a 
large range to show how the need for local monitoring to reduce un-
certainty depends on landscape state, not to represent the reality of 
landscape change. Scenarios in which anthropogenic disturbance re-
mains the same or decreases over time are included in Supplement D.

2.4. Simulation of population dynamics and monitoring

To investigate the effectiveness of various monitoring strategies, and 
to show how this varies with landscape condition, we begin by simu-
lating example demographic trajectories and observations of those tra-
jectories using a modified version of Johnson et al.’s (2020)
demographic model described by Dyson et al. (2022). For brevity, we 
refer to this as the “national” model, and for clarity we include a full 
description in the following paragraphs. Together, a set of example 
trajectories from the national model represent alternative hypotheses 
about the true state of a particular caribou population. To assess the 
accuracy of population status assessments and the expected value of 
alternative monitoring strategies (Dunham et al., 2023; Runge et al., 
2011) we analyze each trajectory of simulated observations using the 
Bayesian model (section 2.4). We also use the sets of simulated trajec-
tories to confirm that prior predictions from our Bayesian model are 
consistent with knowledge of the observed distribution of outcomes for 
caribou across the country (Johnson et al., 2020).

Given a population of post-juvenile females at the beginning of year 
t, Ṅt , the number that survive to the census, Ẇt, is binomially distributed 

with true survival probability Ṡt : Ẇt ∼ Binomial
(

Ṅt , Ṡt

)

. Realized 

recruitment rate varies with population density (Lacy et al., 2017), and 
the number of juveniles recruiting to the post-juvenile class at the census 
(

J̇t

)

is a binomially distributed function of the number of surviving 

post-juvenile females (Ẇt) and the maximum potential recruitment of 
female calves per cow (Ẋt): 

J̇t ∼ Binomial

⎛

⎜
⎝Ẇt , Ẋt

⎡

⎢
⎣p0 − (p0 − pk)

⎛

⎝Ẇt

k

⎞

⎠

b
⎤

⎥
⎦

Ẇt

Ẇt + a

⎞

⎟
⎠, (2) 

Given the values of parameters p0, pk, a, and b used by Johnson et al. 

(2020) (Table A1), recruitment rate is lowest 
(

0.5Ẋt

)
when Ṅt = 1, 

approaches a maximum of Ẋt at intermediate population sizes, and de-
clines to 0.6Ẋt as the population reaches carrying capacity of k = 10000. 
The post-juvenile female population in the next year includes both 

survivors and new recruits: Ṅt+1 = min
(

Ẇt + J̇t , rmaxṄt

)

, where the 

maximum potential population growth rate is rmax = 1.3.
The observable calf:cow ratio Ṙt is adjusted for sex ratio and 

composition survey errors (Supplement B) to get the maximum potential 
recruitment of female calves per cow Ẋt: 

Ẋt = ċṘt
/
2; ċ =

w(1 + q̇u̇ − u̇)
(w + q̇u̇ − u̇)(1 − ż)

, (3) 

where w is the ratio of observed adult females to collared animals, q̇ is the 
ratio of young bulls to adult females, u̇ is the probability of misidentifying 
young bulls as adult females and vice versa, and ż is the probability of 
missing a calf. We examine sensitivity to these unknown parameters by 
selecting values for each simulated example population from plausible 
ranges: u̇ and v̇ vary uniformly between 0 and 0.2, and q̇ varies uniformly 
between 0 and 0.6. The distinction between the true composition bias 
term ċ and the term c we include in the Bayesian model (eq. (1)) is that 
the (simulated) truth is known, and the Bayesian model bias is uncertain.

Interannual variation in survival and recruitment is modelled using 
truncated beta distributions [rtrunc function; Novomestky and Nadar-
ajah, 2016]: Ṙt ∼ TruncatedBeta(Rt , vR, lR, hR); Ṡt ∼ TruncatedBeta 
(St , vS, lS, hS). Coefficients of variation among years (vR, vS) and 
maximum/minimum values lR, hR, lS, hS for recruitment and survival are 
given in Table A1. Expected recruitment (Rt) and survival (St) vary with 
disturbance according the beta regression models estimated by Johnson 
et al. (2020): 

Table 1 
Monitoring scenario parameters and values used in simulations.

Symbol Description Units Values

d Monitoring duration. years 1,2,4,8,16,24
n Target # of collars. cows 0,15,30,60
o Years between collar deployments. years 1,4
w Cows per collared animal in composition 

survey.
ratio 6
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Rt ∼ Beta
(
μR

t ,ϕ
R); log

(
μR

t
)
= β̇

R
0 + β̇

R
a At + β̇

R
f Ft , (4) 

St ∼
(
46×Beta

(
μS

t ,ϕ
S) − 0.5

)/
45; log

(
μS

t
)
= β̇

S
0 + β̇

S
aAt . (5) 

ϕR ∼ Normal(19.862,2.229) and ϕS ∼ Normal(63.733,8.311) are 
precisions of the Beta distributed errors (Ferrari and Cribari-Neto, 
2004). At the beginning of a simulation for an example population, 
regression coefficient values are sampled from Gaussian distributions 
(see Table 2) and the population is assigned to quantiles of the Beta error 
distributions for survival and recruitment. The population remains in 
these quantiles as disturbance changes over time, so there is substantial 
persistent variation in recruitment and survival among example pop-
ulations (Fig. 2).

In our simulated example populations the number of collared cows at 
the time of the composition survey T̂ t depends on the true survival rate 
Ṡt and the number of collared cows at the beginning of the year Î t: 

T̂ t ∼ Binomial
(

Î t , Ṡt

)

. The number of cows in the composition survey 

Ŵt is given by the number of collared cows T̂ t and the apparent number 
of adult females per collared female observed in the composition survey 
w: Ŵt = wT̂t. The number of observed calves Ĵt also depends on the 

unadjusted apparent recruitment for the population Ṙt : 

Ĵ t ∼ Binomial
(

Ŵt , Ṙt

)

. (6) 

To ensure that results are comparable across monitoring scenarios 
and that populations remain extant through the monitoring period, all 
simulations are started with N0 = 5000 animals 24 years prior to the 
start of the projection period. Realized population growth rate is λ̇t =

Ṅt/Ṅt− 1 Expected population growth rate (without interannual varia-
tion, demographic stochasticity, or effects of population density) is λt =

St(1 + ċRt/2).

2.5. Bayesian integration of local demographic data and national 
disturbance-demographic relationships

Local demographic and covariate data provided as inputs to the 
Bayesian population model include the number of collared cows at the 
start of the year ( Î t), the number of collared animals that survive the 
year (T̂ t), the observed number of adult females and calves in the 
recruitment surveys (Ŵt , Ĵt), the apparent number of adult females per 
collared female in the composition survey w, and the measures of 
anthropogenic disturbance and fire (At , Ft). Recruitment rate Rt is esti-
mated from the observed number of calves Ĵt and adult female caribou 
Ŵt assuming a Binomial distribution: 

Ĵ t ∼ Binomial(Ŵt ,Rt). (7) 

The difference between eqs. (6) and (7) is that in the simulation 
model an unadjusted apparent recruitment rate Ṙt is selected and used to 
simulate observations. In the Bayesian model, in contrast, observations 
are provided, and used to estimate the unobserved recruitment rate Rt.

In both models, recruitment probability is a function of anthropo-
genic disturbance and fire with a log link and Beta distributed interan-
nual variation (Dyson et al., 2022; Johnson et al., 2020; Stewart et al., 
2023). The coefficient of variation νR is constant, while the mean R̃t and 

Fig. 1. Anthropogenic disturbance and monitoring scenarios. Anthropogenic disturbance increases by 1 % per year, and the amount of disturbance at the beginning 
of the projection period varies from low (0 %), through low-med (20 %) and med-high (40 %) to high (60 %). These simple hypothetical scenarios are intended to 
show how the need for local monitoring to reduce uncertainty varies with landscape state, and not intended to reflect real landscape change. In all scenarios, the 
projection period begins in 2024, and the monitoring period occurs prior to the projection period.

Table 2 
Prior means and standard deviations of Gaussian distributed survival and 
reproduction model parameters. Standard deviations are calibrated so that the 
95 % prior predictive intervals for survival and recruitment from the Bayesian 
model match the 95 % prediction intervals from Johnson et al.’s regression 
model (Supplement C).

Parameter Description Mean SD

βR
a R anthropogenic disturbance slope − 0.0170 0.0060

βR
f R fire slope − 0.0081 0.0020

βS
a S anthro slope − 0.0008 0.0005

βR
0 R intercept − 1.0230 0.3500

βS
0 S intercept − 0.1420 0.0600
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standard deviation σR,t vary with disturbance: 

log
(

R̃t

)
= βR

0 + βR
a At + βR

f Ft (8) 

Rt ∼ Beta
(

R̃t , σR,t

)
; σR,t = min

(

νRR̃t ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R̃t

(
1 − R̃t

)√ )

(9) 

In the simulation model (eq. (4)), regression coefficient values (β̇R
0 ,β̇

R
a ,

β̇
R
f ) are selected for each example population and used to calculate 

recruitment rate. In the Bayesian model (eq. 8), unobserved regression 
coefficients (βR

0 ,β
R
a ,β

R
f ) are estimated from local recruitment survey and 

disturbance observations.
To account for sex ratio of calves and additional uncertainty caused 

by composition survey errors (Supplement B) estimated recruitment is 
adjusted to get expected female recruits per female Xt = cRt/2. The 
composition survey bias term c (eq. (1)) depends on the known apparent 
number of adult females per collared animal w, the unknown ratio of 
young bulls to adult females q, the unknown probability of mis-
identifying young bulls as adult females and vice versa u, and the un-
known probability of missing a calf z (Supplement B). Prior uncertainty 
about the value of the bias term c is approximated with a Log-normal 
distribution (Supplement B). Given the apparent number of adult fe-
males per collared animal w in each monitoring scenario (Table 1), we 
calculate the mean and standard deviation of 10,000 samples of logc 
assuming the ratio of young bulls to adult females q varies uniformly 
between 0 and 0.6, the adult misidentification probability u varies 
uniformly between 0 and 0.2, and the probability of missing a calf z 
varies uniformly between 0 and 0.2.

Survival St is estimated from the observed number of collared cows 
at the beginning of each year ̂It and the number of those that survive the 
year T̂ t assuming a Binomial distribution: T̂ t ∼ Binomial(̂It , St). Note 
that real known-fate radio collar data should be analyzed with a method 
that accounts for variation in survival rate and the number of collared 
animals throughout the year (e.g. Dalgarno et al., 2024; Eacker et al., 
2019; Lamb et al., 2024). However, our implementation of a two-step 
non-parametric survival analysis method (following Eacker et al., 
2019) yielded slightly biased survival estimates.

As done by Johnson et al. (2020), we model survival probability as 
an adjusted function of anthropogenic disturbance At with a log link and 
Beta distributed interannual variation with coefficient of variation νS, 
mean S̃t and standard deviation σS,t (Dyson et al., 2022; Stewart et al., 
2023): 

S̃t =
(

46eβS
0+βS

aAt − 0.5
)/

45 (10) 

St ∼ Beta
(

S̃t , σS,t

)
; σS,t = min

(

νSS̃t ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S̃t

(
1 − S̃t

)√ )

(11) 

Again assuming a simple demographic model with a census in late 
winter of surviving females and new recruits to the post-juvenile class 
(Hatter, 2020; Hatter and Bergerud, 1991), the expected population 
growth rate (without interannual variation or demographic stochas-

ticity) is λ̃t = S̃t

(

1 + cR̃t/2
)

.

All regression coefficients are assumed to be Gaussian distributed, 
with prior means from Johnson et al.’s (2020) regression models 
(Table 2). We calibrated the standard deviations of the priors so that the 
the 95 % prior predictive intervals for survival and recruitment from the 
Bayesian model match the 95 % prediction intervals from Johnson 
et al.’s (2020) regression model (Supplement C, Fig. 3). To show the 
value of informative priors, we also include a weakly informative sce-
nario with prior means of the intercept parameters from Dalgarno et al. 
(2024) (βR

0 = − 0.3689, βS
0 = − 0.2126776), prior means of the slope 

parameters set to zero, and standard deviations for all parameters 
(Table 2) multiplied by ten.

For reference, all variables and parameters are defined in supple-
mental Table A1. Models and analysis were implemented using the R 
language (R Core Team, 2023) and a variety of tidyverse packages 
(Wickham et al., 2019). We use the open source Gibbs sampling software 
JAGS (Plummer, 2023) and the R2jags R package (Su and Yajima, 2021) 
to fit the Bayesian model. We ran 15,000 iterations of 4 chains, dis-
carded the first 10,000 interations, and used a thinning rate of 2. We 
assessed convergence for a small random subset of example trajectories 
using a threshold for the Gelman-Rubin diagnostic (Gelman and Rubin, 
1992) of r-hat <1.1, and visually inspected posterior autocorrelation 
and traceplots produced by the mcmcplots R package (Curtis, 2018). 
Code required to run analyses and reproduce figures in this paper is 
available at https://github.com/LandSciTech/Caribou-Demograph 
ic-Projection-Paper, and in the caribouMetrics R package available on 
GitHub at https://github.com/LandSciTech/caribouMetrics/tree/EI-pa 
per-submission.

2.6. Probability of correct status assessment and expected value of 
information

In order to assess whether a monitoring program is likely sufficient to 
inform decisions, it is important to select outcome measures that are 
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Fig. 2. Examples of simulated population trajectories from a model informed only by national disturbance-demographic relationships. To highlight how variation 
among trajectories persists as disturbance changes, we have reduced interannual variation by 75 % in these examples (vR = 0.115,vS = 0.02175). Orange dots show 
means of 500 example trajectories. For reference, black lines and and shaded bands show means and 95 % predictive intervals from Johnson et al.’s (2020)
regression models.
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Fig. 3. Prior (a) and posterior predictions from the Bayesian model for population trajectories with informative (a,b) and weakly informative (c) priors given lower 
interannual variation (vR = 0.23,vS = 0.435) and long-term monitoring. In this example scenario anthropogenic disturbance increases by 2 % per year from 0 to 100 
%. The population is monitored for 16 years with 30 collars per year, and 6 cows per collared cow in the composition surveys. The prior means and 95 % predictive 
intervals (a, orange lines and shading) are similar to the means and ranges between the 2.5 % and 97.5 % quantiles of 3000 simulated survival and recruitment 
trajectories from the national model (a, blue lines and shading). Local population data (open triangles) reduces uncertainty about demographic rates (b), though that 
is not needed to predict viability (population growth ≤ 0.99) of highly disturbed populations (a). With weakly informative priors the model does not provide accurate 
or precise predictions of future viability after 16 years of monitoring in a case where anthropogenic disturbance is increasing to 90 % (c). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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relevant to decision making (Gregory et al., 2012). For boreal caribou 
and other endangered species, a relevant outcome is the probability of 
correctly predicting the true population status (increasing or decreasing) 
(Dunham et al., 2023). To calculate this outcome for each disturbance 
and monitoring scenario (Fig. 1) we simulate observations from 500 
example trajectories (e.g. Fig. 2), fit the Bayesian model to each of these, 
and calculated the percentage of these 500 examples in which the 
Bayesian posterior expected population growth rate and the true ex-
pected population growth rate are both greater than 0.99, or both less 
than or equal to 0.99.

Following Dunham et al. (2023) we also calculate the expected value 
of perfect information (EVPI) and the expected value of sample infor-
mation (EVSI) (Runge et al., 2011; Yokota and Thompson, 2004). We 
assign a value or utility of ηα,ψ = 1 when the true state of the population 
ψ matches the assigned status α, and value of ηα,ψ = 0 when the status 
assessment is incorrect. This is “the value ascribed by the decision-maker 
to the outcome, and is thus the measure of management performance” 
(Runge et al., 2011). The expected value of current information is the 
average utility of decisions informed by knowledge of the disturbance 
scenario τ (Fig. 1) and priors from the national model: 

EVcurrent = maxα
∑

ψ

[
P(ψ|τ)ηα,ψ

]
, (12) 

where P(ψ |τ) is the prior probability that the true state of the population 
is ψ , and each population is assigned a status α informed by the prior. 
The expected value under certainty (i.e. the expected value of a decision 
when the true state of the population is known) is EVcertainty = 1. The 
difference between EVcertainty and EVcurrent gives EVPI, a measure of the 
maximum possible benefit that could theoretically be gained if the 
system were perfectly known.

EVSI measures expected improvement from a particular monitoring 
strategy as the difference between the expected value with and without 
additional sample information: 

EVSIτ = Ex

[

maxα
∑

ψ

[
P(ψ |x, τ)ηα,ψ

]
]

− EVcurrent , (13) 

where x is the sample information from a particular example trajectory. 
In this study, we treat simulated observations from 500 example tra-
jectories for each disturbance and monitoring scenario τ (Fig. 1) as 
samples from the distribution of possible values of x, and assume each of 
these sample results is equally probable. P(ψ|x, τ) is the posterior prob-
ability that the true state of the population is ψ , and each population is 
assigned a status α informed by the sample information.

To aid in interpretation of results and to highlight the advantages of 

Fig. 4. Posterior predictions from the Bayesian model for population trajectories with informative (a) and weakly informative (b) priors given higher interannual 
variation (vR = 0.46, vS = 0.087) and limited monitoring (4 years, 15 collars per year, 3 cows per collared cow in composition surveys). See Fig. 3 for disturbance 
trends and other details. The limited local data (open triangles) reduces uncertainty (orange shading) about the observed current state of the population, but is not 
sufficient to reduce future uncertainty. Given limited data the model with informative priors (a) yields predictions (orange bands) that are consistent with knowledge 
of observed outcomes across the country (blue shading), and the model with weakly informative priors (b) does not. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
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selecting a metric that is directly relevant to the management objective 
of stable or increasing populations, we also show how integrating local 
monitoring data alters the distribution of differences between true ex-
pected population growth rates and Bayesian posterior expected growth 
rates.

3. Results

Analysis of simulated example demographic trajectories confirms 
that our Bayesian model can effectively combine local demographic data 
with priors from a national demographic-disturbance relationships to 
reduce uncertainty in boreal caribou demographic projections (Figs. 3 
and 5). When local data are limited (e.g. 4 years, 15 collars per year) the 
model with informative priors (i.e. knowledge of national relationships) 
yields predictions that are consistent with knowledge of observed out-
comes across the country, and the model with weakly informative priors 
does not (Fig. 4). When there is interannual variation, increasing the 
duration of monitoring improves predictions of population growth rate 
substantially, and increasing the number of collars each year is less 
effective (Fig. 5). Insufficiently informative priors can yield predictions 
that are both imprecise and inaccurate even in a case where there are 16 
years of local monitoring data (Fig. 3), highlighting the benefits of 
integrating national relationships with these local data. Increasing the 
forecast horizon (Petchey et al., 2015) does not substantially decrease 
the accuracy of expected population growth projections (compare 0, 5 
and 20 year projections in Fig. 5) in these scenarios.

Examining the probability of correctly assessing population status 

(Fig. 6) and the expected value of information (Figs. 7 and E.1) helps 
clarify how the need for monitoring varies with landscape condition. 
When anthropogenic disturbance is high (right panels of Figs. 6, 7, and 
E.1), projections of population status informed only by priors from the 
national demographic-disturbance relationships are accurate, and add-
ing additional local monitoring data does not improve accuracy. At 
lower levels of disturbance, local monitoring can increase accuracy, but 
there are diminishing returns as the number of years of monitoring in-
creases (Figs. 6 and 7). Increasing accuracy is more difficult when 
interannual variation is high (Figs. 6 and 7). The shapes of the re-
lationships between monitoring effort and the probability of correct 
status assessment depend on how anthropogenic disturbance is chang-
ing over time, but there are diminishing benefits of increased monitoring 
regardless of whether disturbance is increasing or decreasing (Supple-
ment D). Acknowledging the possibility of composition survey errors 
reduces accuracy, but the reductions are not large for the set of pa-
rameters we investigate (Supplement F).

Averaging over the full set of example trajectories for each scenario 
(Figs. 6 and 7) obscures variation among them that is also important for 
monitoring decisions. For example, where disturbance is low but 
increasing, monitoring helps identify populations that are faring less 
well than expected now (top left of Fig. 8), and also helps identify 
populations that are likely to remain viable in the future when distur-
bance is higher (bottom right of Fig. 8). Status assessment accuracy is 
much higher when the 95 % credible interval for expected population 
growth rate does not include one (99.72 %) than when it does (81 %), 
and this information could be used to guide monitoring. A more nuanced 

Fig. 5. The distribution of differences between true expected population growth rates and Bayesian posterior expected growth rates varies with the amount of 
anthropogenic disturbance (columns), the number of years projected (rows), and monitoring effort (see Fig. 1 for scenarios). Differences decrease as the number of 
years of monitoring and the number of collars increase. In these examples the composition survey cow multiplier w is 6, collars are renewed each year, and 
interannual variation is lower (vR = 0.23, vS = 0.0435).
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option is to recognize that the posterior probability of population 
viability (P(ψ|x, τ) in eq. (13)) is an indicator of error probability 
(Fig. 9). The probability of making an error also depends on the true 
(unknown) level of bias in the composition survey, but as the estimated 
posterior probability of viability approaches 0 or 1 accuracy increases to 
100 % even when the survey is biased (Fig. 9). One could inform a de-
cision about whether more information is needed for a particular pop-
ulation by selecting an error tolerance (e.g. the probability of correct 
status assessment should be >95 %) and using that threshold to distin-
guish cases where the posterior probability of viability is sufficiently 
certain (i.e. near enough to 0 or 1) from cases where more information is 
needed (Fig. 9). A key advantage of accounting for composition bias 
uncertainty in the Bayesian model is that when the model indicates high 
confidence (i.e. the estimated probability of viability very close to 0 or 1) 
the answer is likely to be correct (high status assessment accuracy) even 
when the composition survey is biased (Fig. 9).

4. Discussion

4.1. Bayesian integration of local demographic data & national 
demographic-disturbance relationships

The availability of boreal caribou demographic data varies widely 
across Canada due to large variation in habitat condition, population 
condition, available resources for monitoring, and remoteness. In a few 
regions enough data have been collected over time to characterize local 

demographic-disturbance relationships (Hervieux et al., 2013; Rudolph 
et al., 2017), but most populations have only been sparsely monitored 
for snapshot estimates of trend or abundance (Johnson et al., 2020). As a 
result, in most regions it is necessary to make assumptions informed by 
observed variation in demographic rates with disturbance among pop-
ulations and other relevant information about impacts of disturbance on 
caribou. However, high observed variation in demography where 
anthropogenic disturbance is low leads to high uncertainty in pro-
jections informed by national demographic-disturbance relationships 
alone (Dyson et al., 2022; Stewart et al., 2023). In some cases, pre-
dictions of population growth rate informed by national demographic- 
disturbance relationships appear to disagree with estimates from local 
demographic data (Dyson et al., 2022; ECCC, 2011), but without formal 
methods of accounting for uncertainty it can be difficult to distinguish 
true discrepancies from stochastic variation.

We have proposed a simple Bayesian population model that helps 
address these challenges by acknowledging uncertainty associated with 
local demographic data and national demographic-disturbance re-
lationships, and integrating these two sources of information to reduce 
uncertainty in projections of the impacts of changing landscape condi-
tions. This Bayesian approach represents an important improvement 
over less formally integrated methods for estimating and projecting 
impacts of disturbance on population caribou population viability 
(ECCC, 2011; Johnson et al., 2020) because it reconciles and accounts 
for uncertainties in local demographic data and in demographic- 
disturbance relationships.

Fig. 6. The probability of a correct status assessment varies with the amount of anthropogenic disturbance (columns), the number of years projected (rows), the 
amount of interannual variation (high: vR = 0.46,vS = 0.087, low: vR = 0.23,vS = 0.0435, none), and monitoring effort (see Fig. 1 for scenarios). When disturbance 
is high the probability of correct status assessment is high even with one year of monitoring. Where disturbance is low or moderate, increasing the number of years of 
monitoring increases accuracy, but there are diminishing returns on additional monitoring as the number of years increases. In these examples the composition cow 
multiplier w is 6 and collars are renewed each year; varying these parameters does not alter qualitative conclusions (Supplements D and E).

J. Hughes et al.                                                                                                                                                                                                                                  Ecological Informatics 87 (2025) 103095 

9 



Our model assumes that increasing cumulative anthropogenic 
disturbance causes a log-linear decrease in caribou demographic rates 
(eqs. 4, 5, 8 and 10), reflecting a scientific consensus that cumulative 
anthropogenic disturbance has a negative impact on boreal caribou 
(ECCC, 2011; Gouvernement du Québec, 2021; Hervieux et al., 2013; 
Johnson et al., 2020; Rudolph et al., 2017; Sorensen et al., 2008). Local 
data can be integrated to estimate local demographic-disturbance pa-
rameters that differ from the national means, and in the absence of local 
data, appropriate priors lead to a range of outcomes consistent with the 
observed range of variation across the country (Figs. 3 and 5 in Johnson 
et al., 2020). Others (Dalgarno et al., 2024; Eacker et al., 2019; McNay 
et al., 2022; Moeller et al., 2021) have also used Bayesian models to 
estimate caribou demographic rates from local monitoring data, but our 
addition of prior information from national demographic-disturbance 
relationships is novel, and important for reducing the risk that lack of 
local data will be used as a reason to delay conservation action for highly 
disturbed and poorly monitored populations (Bissonnette and Tei-
telbaum, 2020; Boan et al., 2018). Accounting for demographic- 
disturbance relationships in a viability projection model clarifies that 
no additional local information is needed to project population decline 
where disturbance is high and actions to support recovery are not taken; 
the distribution of observed demographic rates from across the country 
(as summarized by the national analysis) is sufficient to predict prob-
lems for caribou on highly disturbed landscapes.

Interventions such as wolf culls, maternal penning, and restoration of 
linear features are intended to improve survival and reproduction of 
populations that are not otherwise viable (McNay et al., 2022; Serrouya 

et al., 2020). Our focus in this paper is on assessing and projecting 
viability of populations in the absence of these interventions, to clarify 
when additional information is needed to reduce uncertainty about 
whether there is a need for action. The model we propose does not 
include effects of management interventions, and cannot be used to 
project outcomes for managed populations. There is nothing in our ar-
guments, models or results that can or should be used to discourage 
monitoring of the effectiveness of conservation actions. The point we 
wish to emphasize is that action is also required, and lack of monitoring 
should not be used as a reason to delay conservation measures for highly 
disturbed populations.

Variation in anthropogenic disturbance across the Canadian boreal 
region is partially correlated with variation in climate and primary 
productivity (Neilson et al., 2022) because forestry occurs in higher 
productivity areas, and petroleum extraction activities are concentrated 
in Western Canada. Effects of disturbance on vegetation and foodweb 
dynamics vary with primary productivity (Neufeld, 2021), and some 
have expressed concern about confounding of demographic-disturbance 
relationships (Wilson et al., 2021). One option for addressing these 
concerns would be to develop regional demographic-disturbance re-
lationships for populations that are ecologically similar to one another 
(e.g. caribou inhabiting forests that are sufficiently productive for in-
dustrial forestry in Eastern Canada) (ECCC, 2024), and to use the priors 
from regional demographic-disturbance relationships to inform de-
mographic projections within the region. However, while acknowl-
edging and allowing for regional variation, we also need to guard 
against risks that uncertainty will be inflated and used as an excuse to 

Fig. 7. The expected value of sample information (EVSI) varies with the amount of anthropogenic disturbance (columns), the number of years projected (rows), the 
amount of interannual variation (high: vR = 0.46, vS = 0.087, low: vR = 0.23, vS = 0.0435, none), and monitoring effort. When disturbance is high EVSI is low, 
indicating that local monitoring does not change predicted status. Where disturbance is lower, EVSI increases with the number of years of monitoring and the number 
of collars, but there are diminishing returns on additional monitoring as the number of years increases. See Fig. 6 for additional scenario details.
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delay action, a tactic that has been used in this and other decision 
contexts (Bissonnette and Teitelbaum, 2020; Boan et al., 2018). In order 
to be informative and credible, regional demographic-disturbance ana-
lyses must include a sufficient number of observations spanning a range 
from high to low anthropogenic disturbance. Priors that lead to pro-
jections of outcomes for caribou that fall outside the observed range of 
variation across the country, characterized here (Fig. 2) by 95 % pre-
diction intervals from a national analysis (Johnson et al., 2020), are 
implausible. In other words, if we have seen no examples of viable 
caribou populations at a particularly high level of disturbance, it is 
unreasonable to project or expect this outcome.

4.2. Allowing for composition survey errors

Another novel aspect of this work is a term that acknowledges 
possible bias caused by misclassification of adults and missing calves in 
composition surveys (DeCesare et al., 2012; Ellington et al., 2020). 
Lacking information about the true magnitude of these errors, we 
examined the accuracy and precision of a Bayesian model that includes 
uncertainty about composition bias using examples with biased 
composition surveys. Acknowledging bias did decrease overall accuracy 
and precision, though these decreases were not large (Supplement E). 
Importantly, when the Bayesian model predictions were precise they 
were also accurate even if the true composition survey was biased 

(Fig. 9). In other words, acknowledging composition bias uncertainty 
made predictions less confident, but in cases where predictions were 
confident they were also trustworthy.

A potential limitation of our analysis is that we assumed the same 
range of values for the probability of misclassifying adults and the 
probability of missing calves. Presuming that surveyed groups contain 
more cows than bulls, and that there is an equal probability of mis-
classifying cows as young bulls and vice versa, then misclassification 
errors cause high estimated recruitment. Missing calves causes low 
estimated recruitment, and together these errors tend to cancel one 
another out. An interesting extension of this work would be to investi-
gate model performance over a broader range of assumptions about 
composition survey error rates, and to examine the implications of 
mismatches between the true distribution of errors and the unknown 
distribution in the Bayesian model. Better information about true 
composition survey error rates would also help assess their importance.

Alternatives to aerial composition surveys for estimating recruitment 
include fecal pellet analysis (McFarlane et al., 2018, 2021, 2022) and 
calf collaring (Ellington et al., 2020). In an analysis of fecal pellets from 
14 populations of boreal and southern mountain caribou, Jones et al. 
(2023) found that sampled groups contained more females than males, 
and that cows tend to stay with their male and female offspring, while 
bulls do not. These results are broadly consistent with our assumption 
that composition survey groups include cows and younger animals of 

Fig. 8. When anthropogenic disturbance is low and expected to increase (low scenario in Fig. 1) the probability of a correct status assessment varies with the true 
growth rate of the population (columns), the number of years projected (rows), the amount of interannual variation (high: vR = 0.46,vS = 0.087, low: vR = 0.23,vS =

0.0435, none), and monitoring effort (see Fig. 1 for scenarios). Increasing the number of years of monitoring helps identify populations with currently declining 
populations (top left), and to identify populations with higher than expected growth rates that fare better as disturbance increases (lower right). Increasing the 
number of collars more effectively increases near-term accuracy when interannual variation is low (top left). If the goal is long-term projection (bottom row) there is 
little advantage to increasing the number of collars. Increasing the accuracy of status assessment for populations with growth rates close to one is difficult (middle 
columns). In these examples the composition cow multiplier w is 6 and collars are renewed each year.
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both sexes that can be difficult to classify visually. Documenting animals 
that are difficult to classify as “unknown” can help analysts account for 
classification uncertainties (Dalgarno et al., 2024; Ellington et al., 
2020), as can comparing classification results from multiple indepen-
dent observers. The probability of missing calves likely increases with 
vegetation cover, and is more difficult to quantify.

Each survey method has costs and benefits, and the reality is that 
monitoring everything everywhere all the time in great detail is neither 
feasible nor necessary. We hope that adding a bias term to the simple 
recruitment-mortality model that is used for many herd viability as-
sessments (Dalgarno et al., 2024; DeCesare et al., 2012; Eacker et al., 
2019; ECCC, 2011; Hatter, 2020; Hatter and Bergerud, 1991; Johnson 
et al., 2020; Serrouya et al., 2017) will enable and encourage practi-
tioners to examine the sensitivity of their conclusions to plausible 
composition survey error rates, and help clarify thinking about where, 
when, and why additional information is needed.

4.3. Limitations and future possibilities

The main objectives of Johnson et al.’s (ECCC, 2011, 2020) national 
analysis were to inform a national disturbance policy that applies to all 
ranges except one in northern Saskatchewan (SK1) that is subject to very 
low anthropogenic disturbance and high fire disturbance, and to inform 
a different policy for SK1 (ECCC, 2011; ECCC, 2019). A hierarchical 
analysis (Leasure et al., 2019) would be better suited for estimating 
variation in demographic model parameters among populations, and for 
distinguishing that from variation among years. We have not reanalyzed 
the national data using different methods because the data are owned by 
many jurisdictions, and obtaining permission from all of these juris-
dictions would be difficult and time-consuming. To move ahead with 
available published information we constrained our example trajectory 
simulations by assuming that populations remain in their quantile, so 
populations that are lower than or higher than average remain lower or 
higher than average over time. Note that the Bayesian model is not 
similarly constrained, and can accommodate evidence of a shift from 
unexpectedly low to unexpectedly high demographic rates over time, or 

vice versa. Switching from low to high each year is unlikely, but there is 
evidence of variation in the slope of demographic-disturbance re-
lationships among populations (Rudolph et al., 2017), so it is important 
that the Bayesian model allows for a greater range of possibilities than 
our more constrained simulated example trajectories. Although the 
simulated trajectories do not include all plausible possibilities, we 
believe they are sufficient to demonstrate how a Bayesian model can be 
used to integrate local data with national priors, and to show that 
monitoring requirements depend on landscape condition.

For this analysis we used a simple survival analysis method that does 
not account for variation in survival rate or the number of collared an-
imals throughout the year. More sophisticated methods should be used 
for analysis of real survival data, but our implementation of a two-step 
non-parametric survival analysis method (following Eacker et al., 
2019) yielded slightly biased survival estimates. Dalgarno et al.’s (2024)
method may be a better alternative. More generally, the proof-of- 
concept model presented in this paper is adequate for making general 
points about the integration of national demographic-disturbance re-
lationships with local data, and for accounting for composition survey 
errors. However, it is a research prototype, not a fully developed analysis 
tool. The more fully developed and documented bboutools R package 
(Dalgarno et al., 2024) is likely a better starting point for development of 
tools to enable local decision makers to inform decisions with their 
existing data. Possible next steps are to extend that package to include 
priors from demographic-disturbance relationships and composition 
survey errors.

Aspatial demographic models generally assume that observed ani-
mals are a random and representative sample of a fully mixed popula-
tion in which survival and recruitment rates apply equally to all animals. 
However, metrics derived from fecal pellet analysis such as reproductive 
success (McFarlane et al., 2018, 2021, 2022), age structure and preg-
nancy rates (Flasko et al., 2017; McFarlane et al., 2022), and mother- 
offspring co-occurence (Jones et al., 2023) suggest high variation in 
fitness among individuals (McFarlane et al., 2018) and spatial structure 
within populations (Jones et al., 2023; McFarlane et al., 2021, 2022). 
Analyses of movement data also show spatial variation in risks and 
benefits for caribou and variation in habitat preferences and space use 
among individuals (e.g. Avgar et al., 2015; DeCesare et al., 2014). It is 
possible to integrate complexities such as variation in demographic rates 
among individuals (Armstrong et al., 2021), population size information 
from aerial or fecal DNA surveys, and variation in demographic rates 
among age classes (McNay et al., 2022; Moeller et al., 2021) into 
Bayesian population models. However, in many contexts there are not 
enough data to estimate more complex model parameters, and simple 
models remain relevant.

Our proof-of-concept analysis shows the value of integrating national 
demographic-disturbance relationships with local data, accounting for 
composition survey errors, and assessing the value of local monitoring 
information. We applied the framework proposed by Dunham et al. 
(2023) to show that no additional local monitoring information is 
needed to predict whether boreal caribou populations in highly 
disturbed landscapes are viable in the absence of interventions such as 
predator control or maternal penning; viability is unlikely. There is more 
variation in caribou demographic rates among study areas with low to 
moderate disturbance, and thus more need for local data to inform de-
mographic projections. In these places, our analysis suggests that there 
may be diminishing returns from increasing monitoring effort, but more 
information on monitoring costs, objectives, and existing local data 
would be required to assess the adequacy and cost-effectiveness of 
monitoring scenarios in particular circumstances.

Monitoring costs vary substantially with technologies used, the 
remoteness of herds, and the difficulty of collaring animals, which in 
turn depends on the number of currently collared animals, the popula-
tion size, and vegetation across the landscape (NBCKC, 2021b). It is 
important to recognize that projecting population viability is only one 
possible objective for monitoring (NBCKC, 2019), and that the impacts 
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of monitoring on threatened animals should be considered (NBCKC, 
2019). Since monitoring costs, options and goals are context specific, we 
believe the most effective way forward will be to use this proof-of- 
concept analysis, existing local data, and the more fully developed 
bboutools R package (Dalgarno et al., 2024) as a starting point for 
working with interested decision makers to develop monitoring decision 
support tools that meet real local needs, recognizing that those needs 
will vary (NBCKC, 2021a, 2022b).
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