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predicting wetland occurrence, the resulting models 
handled the variability in reclamation approach, sub-
strate type, and soil placement depth with high accu-
racy. This work confirmed that ~ 18% (211 ha) of the 
upland-reclaimed area at Suncor Energy’s Base Plant 
north of Fort McMurray, Alberta develops not to 
upland but to unintentional wetland, consistent with 
earlier studies. The ability to predict wetlands on the 
landscape could be invaluable when considering met-
rics of success associated with landscape reclamation 
in the Athabasca Oil Sands Region and for inform-
ing future inquiries around wetland persistence, 
resilience, and spatial connectivity through time on 
reclaimed landscapes.

Keywords  Opportunistic wetland · Mineral soil 
wetlands · Athabasca oil sands region · Reclamation · 
Remote sensing · Machine learning

Introduction

The Athabasca Oil Sands Region (AOSR), in north-
ern Alberta, Canada, is the fourth largest proven 
oil deposit in the world. It is also an area of diverse 
upland forests and extensive wetland habitat, with as 
much as 54% of the area historically covered by wet-
land vegetation (AEP Alberta Environment and Parks 
(AEP), 2018). Bitumen extraction in the AOSR, like 
other natural resource extraction industries, results 
in large-scale and long-term habitat conversion that 

Abstract  Achieving land capability equivalent 
to that which existed prior to disturbance is the pri-
mary goal of reclamation in the Athabasca Oil Sands 
Region of northern Alberta. To date, most reclama-
tion has focused on the re-creation of upland forest 
ecosystem analogues. However, a few wetlands have 
also been constructed. Additionally, wetlands have 
appeared spontaneously on landforms reclaimed to an 
upland forest type. Classifying and quantifying these 
opportunistic wetlands is an important consideration 
relative to oil sands closure and reclamation planning. 
Here we describe an approach using topographic and 
spectral variables to train a machine learning model 
(random forest) to detect and classify wetlands as an 
alternative to on-screen visual delineation. The aim 
was to develop a model that not only predicts where 
wetlands occur on reclaimed landforms but that is 
sensitive enough to classify them as to wetland form. 
Two random forest models were developed that pre-
dicted wetland occurrence at two levels: (1) wetland 
vs. non-wetland (to generate a prediction of all wet 
areas on reclaimed landforms); and (2) wetland class 
(with specific emphasis on marsh and shallow open 
water wetland classes). In addition to successfully 
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alters natural ecosystems, including wetlands (Volik 
et  al. 2020). Environmental regulations require oil 
sands mines to re-establish, as part of their ongoing 
operations, functional landscapes of ‘equivalent capa-
bility’ as compared to the pre-existing landscape that 
integrate with the surrounding landscape; although 
specific areal requirements are not part of the regu-
latory guidelines (Government of Alberta 2021; 
Gosselin et  al. 2010). To date ~ 10,000  ha of boreal 
landscape disturbed for oil sands mining has been 
permanently reclaimed (AEP Alberta Environment 
and Parks (AEP), 2023). Most habitat reclamation in 
the AOSR has focused on the re-creation of upland 
ecosystems typical of the region with only relatively 
small areas reclaimed to mineral soil wetland (shal-
low open water, marsh, swamp and transitional shrub) 
or peatland (fen, bog) ecosystems (CEMA 2014; 
Ketcheson et  al. 2016; Hawkes and Gerwing 2019; 
Hawkes et  al. 2021; Borkenhagen et  al. 2023) even 
though much of the pre-mined landscape contained 
peatland wetlands. Constructed wetlands usually 
are proposed to make up less than 5% of the closure 
landscape. Nevertheless, the organic matter that was 
salvaged from wetland bogs and fens prior to distur-
bance, and commonly referred to as peat-mineral mix, 
was often laid down during reclamation as an organic 
rich overlayer on reconstructed upland habitats (Pinno 
and Hawkes 2015). Following reclamation, research-
ers noticed wetlands forming on landforms reclaimed 
to upland forest types. These unplanned, spontaneous 
developments were referred to as ‘opportunistic wet-
lands’ (Little-Devito et al. 2019).

Opportunistic wetlands have been shown to 
increase the suitability of reclaimed landforms for 
wildlife (Hawkes et  al. 2020) and, importantly, con-
tribute to the development of reclaimed landforms 
that approximate the mosaic of wetlands, peatlands, 
and upland forest that dominated the landscape prior 
to mine development in the region. While the under-
lying mechanistic factors responsible for opportunis-
tic wetland development have received some attention 
(Gringas-Hill et al. 2018, Trites and Bayley 2009, Lit-
tle-Devito et al. 2019, Price et al. 2010, Hawkes et al. 
2020) and are of relevance to future wetland reclama-
tion efforts, tools that can reliably predict and quan-
tify opportunistic wetlands are also needed for quanti-
fying the total area of these unplanned developments.

This study builds from earlier work that used photo 
interpretation and remote sensing analysis to estimate 

the total area of opportunistic wetlands forming on 
reclaimed landforms (Hawkes et  al. 2020). Docu-
menting the area occupied by opportunistic wetlands, 
along with their permanence and persistence, is an 
important consideration of closure and reclamation 
planning which aims to promote the establishment 
of functional post-mining landscapes. Here we use 
topographic and spectral (i.e., optical, radar) vari-
ables, applied to previously-collected observations 
(Novoa and Hawkes 2021) from one reclaimed land-
form on Suncor’s Base Plant north of Fort McMurray, 
Alberta, to train a machine learning model (random 
forest) to detect and classify wetlands as an alterna-
tive to on-screen visual delineation. The application 
of machine learning algorithms, including random 
forest models (Breiman 2001) to ecological datasets 
has been increasing in recent times because these 
algorithms are not bound by linearity, can handle a 
large number of covariates, and can detect complex 
relationships and interactions (Shoemaker et al. 2018; 
Bohnett et  al. 2020; O’Malley et  al. 2024). Further-
more, the application of remote sensing has been 
applied to modern wildlife studies (e.g., Hawkes et al. 
2024) and wetland classification work in Canada (e.g., 
Mirmazloumi et al. 2021), but to our knowledge, the 
use of remote sensing attributes and machine learn-
ing to detect and classify wetland areas developing 
on reclaimed landforms is novel and has potentially 
broad implications with respect to closure and recla-
mation outcomes in the AOSR. Improvements to on-
screen delineation through the use of remote sensing 
variables in a machine learning model allow for an 
iterative and optimized approach. By cycling through 
multiple options for the model inputs, a robust tool 
that can be applied to other landforms is created. As 
such, the model could potentially be applied across a 
broader range of spatial–temporal datasets to identify 
the location and class of wetlands that have formed 
on those landforms. The general applicability of these 
methods to the broader AOSR reclamation landscape 
is the primary focus of this paper.

Study area

Suncor’s Base Plant is located approximately 40 km 
north of Fort McMurray, Alberta, Canada in the Cen-
tral Mixedwood subregion of the Boreal Forest Natu-
ral Ecoregion of Alberta (NRC 2006) and the Boreal 
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Plains ecoregion of Canada. The operation has been 
producing bitumen since 1967 and has a total foot-
print of 24,426 ha, of which ~ 2,495 ha (10.2% of the 
total footprint) have been reclaimed. Approximately 
1,209 ha of reclaimed land was remotely surveyed by 
Hawkes and Novoa (2016) and later field-validated 
by Hawkes et  al. (2020). For purposes of wetland 
delineation, the study area was divided into 11 focal 
areas (Table 1, Fig. 1). Each of these Areas of Interest 
(AOI) contained wetlands that formed opportunisti-
cally on landforms reclaimed to upland forest ecosites 
common in the region.

Methods

Field validation

Previous work by Novoa and Hawkes (2021) used 
various modelling approaches to predict the occur-
rence and distribution of wetlands and their associ-
ated classifications (non-wetland, marsh, shallow 
open water, and unspecified [transitional] wetlands) 
on one reclaimed landform on Suncor’s Base Plant 
north of Fort McMurray, Alberta. The predicted out-
puts required field validation to assess the accuracy of 
the model to (1) predict the occurrence and extent of 
opportunistic wetlands, and (2) to accurately classify 

opportunistic wetlands over all reclaimed landforms, 
an area of almost 2,500 ha, relative to AESRD (2015) 
guidelines. Prior work at AOI 7 (Wapisiw Lookout) 
predicted the occurrence of 9.48  ha of wetlands of 
three different classes (6.73 ha of marsh, 2.37 ha of 
shallow open wetland, and 0.38 ha of unspecific wet-
land; Novoa and Hawkes 2021). A field program was 
used to validate the results of the desktop exercise 
and to inform the development of a machine learn-
ing model that could be applied to other reclaimed 
landforms on Suncor’s Base Plant. The desktop 
analysis resulted in thousands of wetland datapoints 
for Wapisiw Lookout (Novoa and Hawkes 2021). To 
make these data manageable and permit sample size 
and location selection, the points were discretized 
(binned) using a majority filter to create a sample of 
equal-sized hexagons of ~ 6.5m2. The boundaries of 
contiguous hexagons were then dissolved to create 
homogeneous polygons associated with wetlands and 
upland habitat. The number of dissolved polygons 
associated with each of the four classes of interest 
(marsh, shallow open water, unspecified wetland, and 
upland) were counted and the percentage of each was 
used to generate the field sample. A random sample 
of 104 points was selected with the following distri-
bution: 79 marsh, 11 shallow open water, 9 unspeci-
fied, and 5 upland (Fig. 2).

Field-level verifications of predicted wetlands at 
AOI 7 were completed in July 2023. July was selected 
for the fieldwork as this was most consistent with the 
seasonal timing of remote-imagery capture (28 July 
2022). Wetland vegetation was also well developed at 
this time. A high-precision GPS unit (Geode GNS3 
Single Band Receiver with sub 30 cm accuracy, Juni-
per Systems Inc.), pre-loaded with shapefiles of the 
predicted wetland polygons, was used to navigate to 
each sample location. Once at the pre-determined 
location, the field crew surveyed the site to identify 
the plant communities present, including any obvi-
ous wetland communities dominated by hydrophytic 
vegetation. Based on this survey, the site was classed 
as either a non-wetland or wetland as per AESRD 
(2015). If a designation of non-wetland was made 
(resulting in a ‘false positive’ finding for that loca-
tion), the reason for this designation was noted and 
reference photos were taken. If wetland conditions 
were noted, the wetland was classified to class, form, 
type, and permanency type using keys in the Alberta 
Wetland Classification System (AESRD 2015) and 

Table 1   Areas of Interest label, name, area (ha), reclamation 
year, and habitat target for areas assessed for wetlands and 
wetland classes on Suncor’s base plant. Rec Year refers to rec-
lamation year. See Fig. 1 for the distribution of AOIs. *Field 
validation data not available for these areas

Area of Inter-
est

Name Area (ha) Rec Year Target

AOI-2 MD 2 143.17 2012 Upland
AOI-3 MD 8 201.04 2011 Upland
AOI-4 MD 5 175.42 2009 Upland
AOI-5 SE Dump 42.66 2007 Upland
AOI-6* Dyke 10 24.27 2015 Upland
AOI-7 Wapisiw 

Lookout
195.38 2010 Upland

AOI-9 North Dump 25.9 2015 Upland
AOI-10* Comp Pond 5.69 2010 Upland
AOI-11 North Steep-

bank
395.95 2015–19 Upland

Total Area 1,209.48
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Guide for Assessing Permanence of Wetland Basins 
(Alberta Environment and Parks (AEP) 2014).

The wetland extent was mapped by circum-
navigating the wetland perimeter while recording 
a precise GPS track of the wetland boundary. At 
representative points along the putative wetland 
perimeter, vegetation and soil assays were com-
pleted as necessary (see below) to identify the point 
at which the wetland ended and the upland habitat 
began. During this rapid assessment, the following 
vegetation indicators (adapted from Government of 
Alberta [2015]) were used as visual clues in assess-
ing whether the chosen sample point was located 
within the wetland proper: (1) facultative wetland or 
obligate species account for over half of the abun-
dant species in the plot; (2) surface encrustations 

of algae are present; (3) presence of a dominant 
groundcover of peat mosses (Sphagnum spp.), and 
(4) evidence of morphological adaptations of plants 
to saturated conditions (e.g., floating leaves, inflated 
stems, adventitious roots). In some cases, the pre-
assigned verification point fell close to, but slightly 
outside, the field-delineated wetland boundary. At 
each of these ‘false positive’ points, a 5.64 m-radius 
(100 m2) circular plot was established and a list of 
dominant plants recorded along with percent cover 
estimates. By way of contrast, a matching plot was 
established and sampled just downslope but within 
the putative wetland boundary. The habitat and 
vegetation information yielded by these compara-
tive, closely adjacent point observations were later 
used to inform refinements to the machine learning 
model.

Fig. 1   The distribution of landforms (i.e., the Areas of Interest, AOIs) reclaimed to an upland forest type on Suncor’s base plant. See 
Table 1 for AOI details
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Modelling

The wetland classification exercise used multiple top-
ographic and satellite-derived variables to develop a 
random forest supervised machine learning model. 
The model was then executed for the AOI’s on Sun-
cor’s base plant. The process used to delineate wetlands 
in each AOI was broken down into four main steps; 
manipulation of the raw data inputs, pre-processing the 
spatial input variables, training and tuning the model, 
and generating outputs including wetland delineations 
(i.e., polygons) (Fig. 3).

Data sources

A total of 21 predictor variables were extracted from 
three main sources, all captured in July 2022: (1) a 
Worldview-3 multi-spectral satellite image, (2) a 
LiDAR digital elevation model (DEM), and (3) a 
Synthetic Aperture Radar (SAR)-derived soil mois-
ture index. The WorldView-3 multispectral image, 
acquired on 28 July 2022, with 1 panchromatic and 
8 multispectral bands at 0.3  m and 1.2  m, respec-
tively, was used to create several water-sensitive 
and vegetation indices [normalized difference soil 

Fig. 2   Distribution of marsh, shallow open water, unspecified, and upland habitats selected for field validation at Wapisiw Lookout 
(AOI-7) on Suncor’s base plant
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index (NDSIWV), normalized difference vegeta-
tion index (NDVI) and normalized difference water 
index (NDWI)]. The spatial resolution of 1.2 m was 
used as the basis for all derived products to ensure 
all variables spatially matched. In addition to these 
three indices, an image segmentation variable was 

also calculated using the algorithm Segment Mean 
Shift in ArcGIS Pro. This variable is a discretized 
version of an RGB band combination that represents 
a more compact, visual representation of the image 
itself, reducing its inherent spectral variability. The 
segmentation variable was created using ArcGIS 

Fig. 3   Workflow associated with the delineation of wetlands on landforms reclaimed to an upland forest type on Suncor’s base plant
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Pro (Esri 2022) and the Python library scikit-image 
(van der Walt 2014). This process uses three satellite 
bands to group adjacent pixels that have similar spa-
tial and spectral characteristics. The bands used for 
this process were: near-infrared 2 (NIR2), red-edge 
(RE), and yellow (Y), which are known to improve the 
discrimination among different vegetated aquatic and 
terrestrial habitats (Lane et  al. 2014). Once the seg-
mentation was calculated, the three resulting bands 
were transformed into a single grayscale band using 
the following formula:

Segmentation = 0.2125*R + 0.7154*G + 0.0721*B, 
where R, G, B are the previously segmented bands.

Once all variables were compiled, a point array 
was created. This layer consists of an array of loca-
tions, spaced at 1.2 m, matching the extent and loca-
tion of the resampled datasets. Using this array, all 
variables were transformed from raster (i.e., TIFF 
files) into tabular form. Next, the training points were 
labelled using the field-verified wetland polygons 
obtained from two fieldwork campaigns conducted 
in 2017 (Miller et al. 2017) and 2023 (this program). 
Specifically, the points in the array that fell within the 
boundaries of the field-verified wetlands polygons 
were assigned a corresponding wetland class value. 
These labels or classes were then used to train the 
random forest supervised machine learning model. 
The points were labeled using the following numeric 
codes: 0 (non-wetland), 1 (marsh), and 2 (shallow 
open water).

A digital elevation model (DEM) at 0.5 m of spa-
tial resolution was derived from LiDAR data obtained 
in June 2022. Using the software SAGA GIS (Conrad 
et al. 2022), the LiDAR DEM was aligned and resa-
mpled from 0.5 m to 1.2 m to match the extent and 
spatial resolution of the satellite image bands. The 
downsampled DEM was used to create the following 
topographic variables: channel network base level, 
channel network distance, channels distance, closed 
depressions, convergence index, downslope distance 
gradient, slope length and steepness factor (LS fac-
tor), plan curvature, profile curvature, relative slope 
position, slope (expressed in radians), total catchment 
area, valley depth, and Topographic Wetness index 
(Grabs et  al. 2009). Nine of these topographic vari-
ables are visualized for AOI 7 (Wapisiw Lookout) in 
Fig. 4.

The synthetic aperture radar (SAR) layers were 
kept as individual TIFF files where no alignment or 

resampling operation was performed, due to their 
coarser spatial resolution of 10  m. The two layers, 
both of which provide measurements of soil surface 
moisture used in the model, were: average soil sur-
face moisture chi-B (AvgSSMchiB) and average soil 
surface moisture chi-G (AvgSSMchiG). Soil surface 
moisture refers to the amount of moisture present in 
the top layer of soil, typically measured in terms of 
volumetric water content.

Data from previous field validations of wetland 
area (marsh and shallow open water) in each AOI 
were used to generate available areas for model train-
ing. These areas were transformed into a point grid at 
1.2 m intervals from which a random sample could be 
obtained. The size of the study area, combined with 
the high spatial resolution of the input variables, cre-
ates an imbalanced dataset where the non-wetland 
class has a significantly larger number of samples 
than the other classes. This type of problem tends 
to create biased models where the minority classes 
suffer from high misclassification rates. When deal-
ing with imbalanced training datasets, a crucial step 
in generating an accurate model is to apply a random 
undersampling approach to the majority classes. This 
technique helps to create a more balanced training 
dataset, which in turn leads to more accurate models 
when the minority class is of primary interest (Flo-
rath and Keller 2022). The training dataset comprised 
1,000 samples from non-wetland areas, with an addi-
tional constraint that these samples were at least 50 m 
away from samples of marsh and shallow open water 
classes. The dataset also included 2,000 samples each 
from marsh and shallow open water classes, resulting 
in a total of 5,000 samples. A total of 5,000 points 
were selected for model training to strike a balance 
between generating a model that either overesti-
mated total wetland area (i.e., > 5,000 points) or one 
that could not detect wetlands in a reliable manner 
(i.e., < 5,000 points).

Once the array of points was populated with all 
model attributes, model accuracy and stability were 
assessed relative to all variables and a reduced set 
of variables. A mix of a correlation analysis and a 
visual verification of the distribution of each vari-
able was used to determine which variables could 
be removed from the model. The Pearson standard 
correlation coefficient was calculated and used to 
remove highly correlated variables. Next, boxplots 
of the distribution of values of each variable relative 
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Fig. 4   Visualization of nine topographic variables for AOI 7 (Wapisiw Lookout) extracted from the 0.5 m LiDAR point cloud
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to non-wetland, marsh, and shallow open water wet-
lands were visually evaluated and variables with low 
discriminatory power were removed (i.e., where het-
erogeneity of variance was high). Lastly, because the 
inclusion of correlated predictor variables can lead to 
unstable estimates and variance inflation (Hastie et al. 
2005), Variance Inflation Factors (VIF) of individual 
variables were examined for potentially strong contri-
butions to multicollinearity (Marcoulides and Raykov 
2019) and predictor variables with VIF value > 5 
were removed. The retained variables were those that 
could be used by any model and were not removed 
as an arbitrary means to reduce potential collinearity 
between variables (e.g., O’brien 2007). The combina-
tion of Pearson correlation coefficients, VIF values, 
and visual observations of boxplots for heterogeneity 
among classes supported the data reduction process 
used to refine the variables considered in the final 
model used to predict and classify wetlands (Table 2).

Modelling process

Two random forest models were developed to predict 
the occurrence and distribution wetlands at two lev-
els: (1) wetland vs. non-wetland (to generate a predic-
tion of all wet areas on reclaimed landforms); and (2) 
wetland class (with specific emphasis on marsh and 
shallow open water wetland classes). Random forest 
models are often used in prediction analyses due to 
their increased accuracy and resistance to multicol-
linearity compared to linear regression (Hastie et al. 
2005). The random forest model – specifically the 

bootstrapped aggregation of several regression trees 
– is an ensemble learning method to predict an out-
come (Breiman 2001; Brokamp et  al. 2017). Out-
puts of this model include useful accuracy metrics 
and reports to define the importance of each vari-
able used in the modelling process. Model input is a 
point feature class where each column is a variable, 
one column holds the class labels (i.e., wetlands/non-
wetland), and optionally one column holds a flag for 
constraining the sampling area (i.e., no-sample/sam-
ple). The model is flexible in terms of the number of 
variables and their spatial resolution, both of which 
can be modified. If new variables are available, they 
can be effortlessly incorporated into the model. All 
variables in the model must be stored as Float type, 
while the sampling area constraint and the labels col-
umns must be stored as Integer type. At present the 
model only supports continuous numerical variables.

Model optimization was accomplished through 
a grid search, which systematically evaluated nine 
distinct hyperparameter combinations across tenfold 
cross-validation resulting in a total of 90 model fits. 
This exhaustive search enabled the identification of 
the best-performing hyperparameter settings for the 
random forest model. The weighted average F1-score 
of the wetland vs. no-wetland model was 84%. The 
training accuracy of 0.83 and validation accuracy of 
0.83 demonstrates the model’s ability to generalize 
well to new data.

For the wetland classification model (marsh, shal-
low open water, and non-wetland) the weighted aver-
age F1-score of 0.89 achieved through this process 
indicates a remarkable balance between precision and 
recall, demonstrating the effectiveness of the hyper-
parameter tuning in optimizing the model’s perfor-
mance. ‘Precision’ quantifies the number of positive 
class predictions that actually belong to the positive 
class. ‘Recall’ quantifies the number of positive class 
predictions made from all positive samples in the 
dataset. The F1-score provides a single score that bal-
ances both the concerns of precision and recall in one 
number (Brownlee 2020). Using the optimal hyperpa-
rameters identified, the subset of selected variables, 
and the 5,000 randomly selected samples, a random 
forest model was trained and evaluated. The data-
set was split into training and validation sets using a 
90/10 ratio, allowing for a robust assessment of the 
model’s performance. The results of the training were 
satisfactory, as evidenced by the strong performance 

Table 2   The satellite bands (visible and Infrared [IR]), their 
codes, spectral properties, and resolution used to predict the 
occurrence and distribution of opportunistic wetlands on Sun-
cor’s base plant

Data source Variable name

SAR AvgSSMchiG
LiDAR DEM Channels distance

Closed depressions
Downslope distance gradient
Channel network base level
Valley depth
Wetness index

Worldview-3 NDWI
NIR1
Segmentation
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across all accuracy metrics. Specifically, the model 
achieved an average F1-score of 0.88, indicating a 
good balance between precision and recall. The mod-
el’s ability to generalize to new data was further evi-
denced by its training accuracy of 0.94 and validation 
accuracy of 0.87. These results suggest the random 
forest model was well-suited for the task at hand and 
can be relied upon to make accurate predictions.

Following the successful training of the model, a 
prediction was generated for the entire dataset, com-
prised of 13,120,508 points. A new point array was 
created, augmented with a column containing the 
assigned class labels. While the model achieved an 
overall accuracy of 0.87, a closer examination of the 
results reveals a more nuanced picture. Notably, the 
weighted average F1-score of 0.19 for marsh and shal-
low open water classes suggests that the model strug-
gled to balance precision and recall, potentially indi-
cating difficulties in distinguishing between classes 
when applying the model to an unknown dataset.

Products

In the final stage of the wetland prediction process, 
the predicted points were discretized using the H3 
hierarchical hexagonal grid system (Amirpour et  al. 
2020). This global grid was used at a resolution of 
Level 14, which corresponds to a spatial granular-
ity of approximately 6.5m2 per hexagon. By apply-
ing spatial analysis operations, the dominant class 
(i.e., marsh or shallow open water) within each hex-
agon was identified and subsequently assigned to 
the respective hexagonal unit. This step enabled the 
aggregation of predicted points into a cohesive and 
spatially explicit representation of wetland areas, 

ultimately facilitating the creation of the predicted 
wetland polygons.

Results

Field validation

Of the 104 samples selected for field validation, 90 
were predicted to be wetlands: 79 consisting of marsh 
and 11 consisting of shallow open water (SOW). 
Field validation confirmed a total of 74 wetlands, 
with 46 classified as marsh and 28 as SOW (Table 3). 
Some predicted wetlands were reclassified as upland 
habitat, while some predicted uplands were reclas-
sified as wetlands. Likewise, some marshes were 
reclassified during fieldwork as SOW, whereas only 
one SOW was incorrectly labeled as such by the 
model (Table 3).

For marsh predictions:

•	 Of the 79 predicted marsh samples, 43 were veri-
fied as marsh (54.4%).

•	 18 were reclassified as SOW (22.3%).
•	 Another 18 were reclassified as upland (22.3%).

For SOW predictions:

•	 Of the 11 predicted SOW samples, 10 were veri-
fied as SOW (90.9%).

•	 One was reclassified as upland.

For other categories:

•	 All 9 unspecified samples were reclassified as 
upland.

Table 3   Number and type of wetland features predicted by the 2023 model vs. those identified during field validation work on Sun-
cor’s base plant

Category Predicted (n) Verified (n) Reclassified (n) Accuracy (%)

Marsh 79 43 18 to SOW, 18 to upland 54.4
Shallow Open Water (SOW) 11 10 1 to upland 90.9
Unspecified Wetland 9 0 9 to upland N/A
Upland 5 2 3 to marsh 40.0
False Positives (Wetland) 29 - 15 within 10 m of wetland  ~ 50.0
Wetlands Predicted Correctly 90 71 28 misclassified as upland 78.9
Uplands Predicted Correctly 5 2 3 misclassified as wetlands 40.0
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•	 Of the 5 predicted upland samples, 2 remained as 
upland (40%), and 3 were reclassified as marsh 
(60%).

Overall, 71 of the 90 samples predicted as wet-
lands (78.9%) were verified as wetlands. However, 28 
of the 90 samples (31.1%) predicted to be wetlands 
were actually uplands. Conversely, 3 of the 5 points 
predicted as upland (60%) were verified as wetlands 
(Table 3).

Among the 29 false positives (wetlands incor-
rectly predicted), 15 (~ 50%) were within 10  m of 
an actual wetland, often capturing the riparian shrub 
zone, which can be ambiguous in terms of wetland 
classification.

The remaining 14 false positive points (48%) fell 
clearly within upland habitat (e.g., jack pine stands) 
having no evident wetland characteristics. When 
practicable, these habitats were delineated with a 
GPS track as non-wetland polygons. A few mapped 
polygons did not capture the full extent of the targeted 
wetland feature; the boundaries of these polygons 
were redrawn in the field to indicate their actual size. 
As well, one previously unmapped minor wetland 
feature (temporary marsh) was noted by the survey-
ors as they traversed the Wapisiw catchment. These 
observations were used as false negative data points 
to further train the remote sensing model.

Wetland vs. not wetland

The total area of each AOI predicted to be wet-
land (of any class, i.e., marsh, shallow open water, 

transitional shrub, swamp, or unspecified) varied 
from ~ 13 and 22.5% for a total area of 211.1  ha 
(17.9% of all AOIs assessed), which is consistent 
with previously reported results (i.e., Hawkes et  al 
2020; Table 4). The total area of non-wetland habi-
tat assessed in 2023 was 968.42 ha or 82.1% of the 
AOIs assessed (Table 4). Figure 5 shows the distri-
bution of predicted wetlands (any class) for all AOIs 
along with examples of predicted wetland distribu-
tion at two AOIs considered in this study.

Wetland classification

The 3-class model (marsh, shallow open water, non-
wetland) predicted the occurrence and distribution 
of 56.79 ha of marsh (53.2 ha) and SOW (3.59 ha) 
habitat across all AOIs (Table 5). Some of the areas 
used for training were captured in these predicted 
areas. Adding the additional training areas asso-
ciated with field data obtained in 2017 and 2023 
(i.e., the training data not predicted by the model) 
increased the total estimated area of marsh to 
61.72 ha and SOW to 4.64 ha (Table 5), for a total 
of 66.36  ha of wetland habitat in two classes (i.e., 
marsh and SOW). Figure  6 shows the distribution 
of predicted wetlands (by class: marsh and shallow 
open water) for all AOIs along with examples of 
predicted wetland distribution at two AOIs consid-
ered in this study.

Table 4   Area of marsh and 
shallow open water (SOW) 
habitat predicted by the 
2023 model and 2017 field 
validation work per area of 
interest (AOI) on Suncor’s 
base plant

* Total area excludes AOIs-6 
and 10 due to a lack of 
training data available 
with which to predict the 
occurrence and distribution 
of wetlands

AOI Name AOI
Area (ha)

2023 wetland 2023 upland Hawkes et al. 
(2020)

ha % AOI Ha % AOI ha % AOI

AOI-2 MD 2 143.17 18.8 13.13 124.37 86.87 32.1 22.42
AOI-3 MD 8 201.04 33.8 16.81 167.24 83.19 43.8 21.79
AOI-4 MD 5 175.42 21.7 12.37 153.72 87.63 19.1 10.89
AOI-5 SE Dump 42.66 5.2 12.19 37.46 87.81 6.1 14.30
AOI-6* Dyke 10 24.27 na na na na na na
AOI-7 Wapisiw Lookout 195.38 43.9 22.47 151.48 77.53 12.1 6.19
AOI-9 North Dump 25.9 5.8 22.39 20.10 77.61 1.3 5.02
AOI-10* Comp Pond 5.69 na na na na na na
AOI-11 North Steepbank 395.95 81.9 20.68 314.05 79.32 95.5 24.12

1,179.52 211.1 17.90 968.42 82.10 210 17.80
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Fig. 5   Overview of predicted wetland distribution (any class) for all areas of interest on Suncor’s base plant and at AOIs 2 and 5

Table 5   Area of marsh and shallow open water (SOW) habitat predicted by the 2023 model and additional wetland areas associated 
with field data collected in 2017 and 2023 by area of interest (AOI) on Suncor’s base plant

* Total area excludes AOIs-6 and 10 due to a lack of training data available with which to predict the occurrence and distribution of 
wetlands

Marsh area (ha) Shallow open water area (ha)

Area of Interest Name AOI Area (ha) 2023 Model Training Total 2023 Model Training Total

AOI-2 MD 2 143.17 0.86 0.82 1.68 0.03 0.16 0.19
AOI-3 MD 8 201.04 9.57 1.47 10.58 0.29 0.26 0.44
AOI-4 MD 5 175.42 3.34 3.48 6.82 0.25 0.34 0.59
AOI-5 SE Dump 42.66 1.06 0.27 1.33 0.22 0 0.22
AOI-6* Dyke 10 24.27 na na na na na na
AOI-7 Wapisiw Lookout 195.38 19.47 0.82 19.77 0.49 1.62 0.54
AOI-9 North Dump 25.9 0.36 0.28 0.64 0.11 0.02 0.13
AOI-10* Comp Pond 5.69 na na na na na na
AOI-11 North Steepbank 395.95 18.54 2.49 20.9 2.2 0.33 2.53

Total Area (ha or %) 1,179.52 53.2 9.63 61.72 3.59 2.73 4.64
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Discussion

The development of opportunistic wetlands on 
landforms reclaimed to an upland forest type in 
the Athabasca Oil Sands Region has only recently 
received attention (Little-Devito et al. 2019; Hawkes 
et  al. 2020, Hawkes and Novoa 2021, Zakharov 
et  al. 2024). Multiple mechanisms for opportunistic 
wetland development have been postulated. These 
include the uneven placement of reclamation soils 
resulting in microsite heterogeneity (Gringas-Hill 
et al. 2018) and the promotion of wetter conditions for 
wetland plant development (Trites and Bayley 2009); 
placement of fine-textured top soils resulting in ele-
vated surface saturation (Little-Devito et  al. 2019); 
occurrence of lateral groundwater flows from sur-
rounding uplands (Price et al. 2010); development of 

depressional areas with groundwater influence (Little 
Devito et  al. 2019); and elevation gradients within 
the surrounding catchment (Hawkes et al. 2020). Our 
study, in contrast, uses remote sensing attributes and 
machine learning to detect and classify wetland areas, 
based on the view that underlying physical factors 
and mechanisms like soil texture, landscape position, 
or ecohydrological feedback will be best understood 
once existing wetlands have first been delineated and 
classified.

Heterogeneity in wetland density or likelihood is 
because not all landforms reclaimed to an upland for-
est ecosite are created the same. For example, Wap-
isiw Lookout (AOI-7) is established on the top of 
what was previously a tailings pond while most other 
AOIs were created using either tailings sand of finer 
textured overburden material, which is then covered 

Fig. 6   Overview of predicted wetland distribution (by class: marsh and shallow open water) for all areas of interest on Suncor’s base 
plant and at AOIs 2 and 5
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by up to 2  m of suitable reclamation soil material 
(Pinno and Hawkes 2015). The composition and 
depth of soils placed on reclaimed landforms varies 
as a function of year of reclamation, availability of 
material, planned ecosite for the landform, and even 
operator experience. Collectively these factors can 
introduce the irregularities and heterogeneity that 
allow for opportunistic wetland creation but cannot 
be accurately recorded during placement or easily 
mapped post-placement, making spatial prediction 
of opportunistic wetlands difficult based solely on 
the operational history of the reclamation landscape. 
The present work provides a useful roadmap for using 
remote sensing to identify, post-hoc, wetland poten-
tial after reclamation work is complete.

Because of the potential to consider the inclusion 
of opportunistic wetlands in reclamation and closure 
planning, the value of wetlands to wildlife, and the 
potential to manipulate current reclamation prac-
tices to promote the establishment and persistence of 
wetlands on reclaimed landforms, a more accurate, 
robust, and repeatable method to predict and clas-
sify opportunistic wetlands is of substantive benefit 
to oil sands operators. Further, the rapid assessment 
of wetland areas investigated here can provide annual 
results that allow for investigation of wetland perma-
nence, persistence and extent through time, which is 
relevant for achieving long-term reclamation goals. 
Finally, the increased area of wetlands on the closure 
landscape will better approximate ‘equivalent land 
capability’ in relation to the pre-existing landscape, 
and better integration with a natural surrounding 
landscape, as outlined in the regulatory guidelines.

Previous work on the occurrence, classification, 
and quantification of opportunistic wetlands was 
accomplished using a combination of desktop (GIS) 
wetland delineation and fieldwork (Miller et al. 2017). 
Here, the machine learning models based on topo-
graphic and spectral variables confirmed that ~ 18% 
(211 ha) of the upland-reclaimed area assessed devel-
ops instead to wetland (Hawkes et  al. 2020). Two 
random forest models were ultimately developed that 
predicted wetland occurrence in each AOI at two lev-
els: (1) wetland vs. non-wetland (to generate a pre-
diction of all wet areas on reclaimed landforms); and 
(2) wetland class (with specific emphasis on marsh 
and shallow open water wetland classes). We found 
that the models accurately predict the occurrence of 
wetlands themselves (i.e., distinguish wetland and 

non-wetland) and often—though not always—cor-
rectly distinguish marsh from shallow open water. 
These results were consistent across multiple differ-
ent reclaimed landforms assessed at Suncor’s Base 
Plant with the random forest models handling the var-
iability in reclamation approach, substrate type, and 
soil placement depth with a high degree of accuracy, 
implying that if the models are applied to novel areas 
(and the same variables used), they will successfully 
predict both the occurrence of wetland habitat and, to 
a lesser degree, the wetland form.

Consistent with the literature (He and Garcia 2009; 
López et  al. 2013), our modeling process revealed a 
common phenomenon in imbalanced classification 
problems, which is that the model tends to achieve a 
low precision and high recall for the minority classes. 
While Precision measures the proportion of true 
positives among all positive predictions made by the 
model, Recall measures the proportion of true posi-
tives among all actual positive instances in the data-
set. In an imbalanced dataset, achieving a high Recall 
for the minority class is essential, as it ensures the 
model can identify a substantial proportion of the 
minority class instances. Conversely, a low Recall 
for the minority class would lead to a high number 
of false negatives, which can have undesirable con-
sequences, such as failing to predict wetlands where 
they actually exist. Moreover, over 80% of locations 
predicted to be a wetland were assigned to a wet-
land class in the field. Model performance was not as 
strong with respect to classifying wetlands but is able 
to discriminate (some of the time) between marsh and 
shallow open water with the former more often cor-
rectly assigned. One of the primary outcomes of this 
work is the need to validate the predictions made by 
the model. The ability to predict wetland occurrence 
is high, but field validation is needed to ensure the 
spatial extent and wetland class is accurate.

Our work continues to demonstrate that the devel-
opment and application of these models can be used 
in a multi-temporal analysis to monitor and under-
stand the evolution of opportunistic wetlands on 
Suncor’s base plant (and elsewhere) through the use 
of topographic and spectral datasets associated with 
past or future dates. In a similar way, an understand-
ing of how terrain modifications (e.g., soil settlement, 
slumping, and erosion) affect the formation and evo-
lution of opportunistic wetlands is possible using 
a model such as the one created here by simulating 
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different landform creation practices, revegetation 
strategies, and successional trajectories on reclaimed 
landforms. The utility of these models to define and 
delineate wetlands could be invaluable when it comes 
to reclamation and closure planning and when con-
sidering metrics of success associated with reclama-
tion in the AOSR. Additional consideration should 
be given to the relatively early developmental stage 
of these wetlands, and how their classification may 
change over time as they advance successionally. For 
example, Mombourquette (2023) found that vegeta-
tive species richness significantly changed with age 
of reclaimed wetlands. Similarly, Borkenhagen et al. 
(2023) described rapid changes in the dominant veg-
etation of constructed wetlands over the course of 
10  years. As such, we anticipate that many of these 
mineral-soil wetlands will likely transition to peat-
based organic wetlands, which is based in part on 
observations of initial peat formation noticed at sev-
eral of the wetlands visited during the field validation 
program.

Conclusion

Our modelling approach validates results in Hawkes 
et  al. (2020) and provides enhanced resolution and 
improved accuracy in classifying marsh and shal-
low open water wetlands on reclaimed landforms 
originally designed to support upland forest ecosys-
tems. This advancement demonstrates the capacity of 
machine learning GIS models to recognize and delin-
eate opportunistically forming wetlands with speed 
and precision, enabling the monitoring of multiple 
wetland features across thousands of hectares at regu-
lar intervals. Such efficiency supports a deeper under-
standing of wetland ecological performance, resil-
ience, and persistence in the context of large-scale 
reclamation projects.

An important future application of this approach 
is the quantification of the spatial and temporal per-
sistence of opportunistic wetlands on reclaimed land-
scapes. By reliably tracking the total wetland area and 
comparing it against closure and reclamation objec-
tives, this method offers a robust tool for assessing 
reclamation success and informing adaptive manage-
ment practices. Additionally, the ability to monitor 
changes over time will provide valuable insight into 
how these ecosystems evolve, particularly under the 

influence of climate change and other environmental 
stressors.

The development of opportunistic wetlands indi-
cates a spontaneous diversification of the reclaimed 
landscape, transitioning it toward a more dynamic 
and naturalized closure state. By emulating the 
pre-mining landscape, where frequent wetland for-
mation was a dominant feature, such spontaneous 
developments represent an essential step in the eco-
logical maturation of reclaimed mine sites within the 
Athabasca Oil Sands Region. By fostering conditions 
that support wetland formation and persistence, recla-
mation efforts have the potential to not only promote 
biodiversity and habitat complexity but also to nudge 
successional processes along the desired trajectory. 
As such, the integration of machine learning tools 
with reclamation practices can be an important step 
in ensuring that reclaimed landscapes are resilient, 
functional, and aligned with long-term ecological and 
social objectives.
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