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Executive Summary 
The relationship between groundwater and its receiving environment is of particular interest 
in the Alberta oil sands region (OSR) where industrial operations have the potential to affect 
both the quality and quantity of groundwater resources via e.g., landscape disturbance, 
groundwater withdrawals, and tailings pond seepage. Despite groundwater’s importance to 
natural environments and species communities, monitoring of these interactions has been 
limited. Groundwater dependent ecosystems (GDEs) are ecosystems that are maintained by 
direct or indirect access to groundwater, and rely on the flow or chemical characteristics of 
groundwater for some or all of their water requirements (Rohde et al., 2017). Here, we present 
the results from the first year of a literature review and modeling effort to map aquatic GDEs 
within the OSR.  

Our first year literature review included three components: (1) groundwater indicators of GDEs; 
(2) biological indicators of GDEs to support mapping, with a focus on aquatic environments; 
and (3) empirical methods for mapping GDEs.  

The groundwater indicator review focused on 26 papers and some highly relevant grey 
literature, specific to the oil sands region and our study area (Bickerton et al., 2018; J. S. Birks et 
al., 2012).  We summarized both direct groundwater indicators such as water levels and 
physicochemical properties of water (e.g., temperature, water quality, isotopic composition), 
and indirect indicators derived from topographic and hydrogeological mapping, numerical 
groundwater-surface water modeling and remote sensing. Many of these indicators are used 
as input to our GDE mapping workflow.   

While the biological indicator literature review focused on aquatic GDEs, it also provided some 
preliminary knowledge of biological indicators for terrestrial and subterranean GDEs. The 
current literature on these topics is limited, with only 28 papers identified in our review, 7 of 
which are from Alberta. Despite coverage in the literature of some specific species, taxa, and 
other environmental features that could serve as useful GDE indicators in certain contexts, we 
conclude that GDE mapping is best informed by maps of wetland classes due to their known 
association with groundwater inputs.  

The GDE mapping methods literature review included 22 papers and summarizes approaches 
used at a variety of scales (global to local) across the world, with an emphasis on methods 
appropriate for the boreal region, including studies from Finland. We summarize approaches 
using remote sensing (e.g., spectral vegetation indices and thermal imagery), integrated 
hydrological modeling, suitability mapping and machine learning. The selected method was 
machine learning, using the MLMapper tool (Martínez-Santos et al., 2021) because it is capable 
of leveraging multiple data sources of differing data types to achieve high predictive accuracy 
where data limitations exist, and is scalable to large spatial areas.  

We identified and collated available geographic, geologic, hydrologic and landcover data for 
mapping GDEs. Over 50 datasets were identified, with over 40 datasets compiled. From the 
available data, we selected appropriate data to serve as training & validation data and 
explanatory variables in MLMapper model and identified data gaps. The key data gaps are 
access to the McKay River Integrated Surface Water-Groundwater Model, hydraulic head data, 
and higher resolution thermal data, among others. 
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Based on the results of the three literature reviews and data compilation, we undertook a 
machine-learning based modeling approach in the McKay and Steepbank River watersheds 
using a variety of topographic, hydrogeologic, and wetland/vegetation predictor data, with 
indicators from the literature review informing variable selection. Final variables included in 
the modeling were aquifer hosting sediment, bedrock, depth to water, elevation, flow 
accumulation, normalized difference vegetation index (NDVI), permeability, wetness index, 
slope, soil drainage, and wetland class. Model fit of the top-performing models, as assessed by 
internal cross-validation, was very high. Outputs from the top five models were averaged into a 
final ensemble model of GDE probability. 

The GDE maps identify lower river reaches, riparian areas, and wetlands (e.g., fens) as GDEs, but 
do not capture lakes, likely due to the lack of training data in the modeling pipeline. Upland 
areas are mostly categorized as non-GDEs. We conclude with suggestions for next steps in 
model development and application, as well as for potential improved or additional datasets 
that could be integrated going forward. 

1. Introduction and Background  
Natural resource development in northwestern Alberta’s oil sands region (OSR) continues to 
expand. Understanding the impacts of various related anthropogenic stressors on the region’s 
landscapes, water resources and biota is crucial to effective land use planning and 
management. Since 2011, the federal and provincial governments have worked together on 
environmental monitoring in the OSR through the Oil Sands Monitoring (OSM) Program. In 
2017, both governments renewed their commitment to working together with Indigenous 
communities and industry in the region. The OSM Program strives to improve and continue to 
add to current understanding of environmental conditions and potential oil sands-related 
effects, in the areas of air quality, terrestrial biology, wetlands, surface water and groundwater. 
The latter is a less visible, and therefore sometimes overlooked, but essential component of the 
hydrological cycle.  

The Royal Society of Canada report on Environmental and Health Impacts of Canada’s Oil 
Sands Industry (2010) noted that groundwater and surface water are often treated separately 
but are intimately linked and long-term environmental management should be based on an 
integrated approach. To implement these recommendations, the Joint Oil Sands Monitoring 
Plan (2011) for the Lower Athabasca River watershed included a groundwater component to 
improve understanding of groundwater-surface water interactions recognizing that this is 
essential knowledge for a program focused on aquatic ecosystem health impacts. 
Foundational work has been completed on assessing groundwater influence on selected river 
systems in the OSR (e.g., McKay) (Bickerton et al., 2018). Nevertheless, a 2022 “Condition of the 
Environment: Groundwater in the Oil Sands Region” report produced for the OSM Program by 
InnoTech Alberta reviewed important pathways (e.g., groundwater water recharge, flow, 
transport) by which stressors (e.g., landscape disturbance, groundwater withdrawals, spills, 
leeks, or seepage, etc.) can impact groundwater and groundwater discharge quality and/or 
quantity (J. S. Birks et al., 2022). While providing important insights on groundwater 
stressor-pathway-response in the OSR, this report highlights a continued knowledge gap that 
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remains: the occurrence and condition of groundwater dependent ecosystems (GDEs) within 
the area. In particular, key OSM program questions this work supports include: 

● Do changes in groundwater have effects on the receiving environment? 

● Do changes to groundwater impact harvesting and occupancy patterns, harvesting 
volumes, intergenerational transfer of knowledge, sharing of resources linked to the 
reinforcement of kinship bonds, people’s relationship and obligations to the land? 

With regard to the OSM’s Groundwater Technical Advisory Committee, more specific key 
questions include: 

● Where are the significant areas (e.g. groundwater dependent ecosystems) of 
groundwater connectivity (i.e. groundwater discharge/recharge) to surface waters such 
as streams, wetlands, springs and lakes? 

● Has the quality and quantity of groundwater discharge to groundwater dependent 
ecosystems (GDEs), or other surface waters of interest, changed? 

● What is the cause of any unexpected changes identified in preceding items? 

GDEs are defined by Rohde et al. (2017) as “Ecosystems that are maintained by direct or 
indirect access to groundwater and rely on the flow or chemical characteristics of groundwater 
for some or all of their water requirements.” Alternate definitions emphasizing slightly different 
qualities such as species composition are found elsewhere (e.g., Serov & Kuginis, 2017)), but 
here we rely on the definition from Rohde et al. (2017).  GDEs themselves can be only partially, 
intermittently, or seasonally dependent on groundwater inputs. Within the context of the OSR, 
engineered or anthropogenic GDEs are likely to occur alongside natural GDEs, given the 
existence of wetlands resulting from reclamation practices.  

GDEs are important features of the OSR landscape, fulfilling important ecological functions by 
supporting unique vegetation communities, maintaining local water quality and quantity, and 
acting as a mitigating factor in the face of climatic extremes (e.g., drought). They are of critical 
cultural and traditional significance to local Indigenous communities because 
groundwater-derived base flow supports navigation, and GDEs support vegetation and animal 
communities harvested by Indigenous communities (e.g., they provide ungulate watering 
holes, salt sources, waterbird habitat, base flow in fish habitat). Groundwater ecosystems 
themselves are far more complex than previously thought, showing high levels of trophic 
complexity and specialization often dominated by endemic microbial and other species (Saccò 
et al., 2024). GDE and general groundwater conservation efforts lag behind those for more 
visible surface water or terrestrial ecosystems, and where they exist, are in place because of the 
economic value of a given aquifer or other groundwater source (Rohde et al., 2017; Saccò et al., 
2024). 

GDEs by their nature are sensitive to changes in groundwater discharge, both in quantity and 
quality, and for this reason, act as an ecological assessment endpoint. While it is expected that 
GDEs may be impacted by oil sands development, based on the known impacts to 
groundwater, understanding of the stressor-pathway-response interactions that lead to 
changes in GDEs and associated monitoring have been limited by a lack of understanding 
regarding the extent and distribution of GDEs in the OSR. Improved identification of the 
location of GDEs in the OSR (i.e., mapping) will help support baseline assessments and develop 

7 



appropriate long-term monitoring initiatives for cumulative impacts of local and regional oil 
sands activities. 

The overall objective of the GDE Project is to map GDEs across the OSR and provide 
information on pathways in the conceptual model (impact of groundwater recharge and flow 
and transport of constituents of concern on terrestrial and aquatic ecosystem health) and 
identify opportunities to evaluate the response of biological communities to oil sands-related 
stressors (see Figure A.1 and Figure A.2 in Appendix A).  

1.1 Objective for 2023-2024 

The objective of this work for the 2023-2024 fiscal year is to map aquatic GDEs across a pilot 
area in the OSR so that they can be used to refine a long-term monitoring plan for 
groundwater and contribute to identification of cumulative effects in aquatic and terrestrial 
environments.   

1.2 Phases & Deliverable Details for 2023-2024 

The current work is being undertaken using a phased approach. Given the long-term objective 
of mapping GDEs across Alberta’s OSR, this first phase consists of collaborative efforts between 
the OSM Groundwater Technical Advisory Committees (TACs), and the Alberta Biodiversity 
Monitoring Institute (ABMI) and InnoTech Alberta. Outcomes of the work will also be shared 
with the Terrestrial Biological Monitoring (TBM) Technical Advisory Committee in recognition of 
the important relationships to their work. It forms a scientific and practical foundation for 
future mapping phases, which are anticipated to incorporate wider OSM support of mutual 
monitoring plan integration and knowledge sharing. 

Deliverables for this project for the 2023-2024 fiscal year include: 

● A technical report (i.e., the current document), presenting the outcomes of the tasks 
listed below: 

o A review of the academic and grey literature on GDE mapping approaches and 
groundwater indicators that includes:  

▪ boreal GDE category definition;  

▪ use of methods or rules for identifying and mapping GDEs using 

examples from other jurisdictions; and  

▪ recommendations for validating approaches used for GDE mapping and 

identification of existing datasets that could be leveraged to support 
these approaches; 

o A review of the academic literature on biological (i.e., key species and 
community) indicators of aquatic GDEs in boreal systems (future work will 
include terrestrial and subterranean GDEs); 
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o The identification, review, and collation of data sources currently available within 
the OSR to support GDE mapping using identified approaches, including the 
identification of data gaps and recommendations for filling these gaps; 

o Initial GDE mapping within a selected area of interest in the OSR, using the 
collated data and identified approaches; 

● A digital, annotated geodatabase of the initial GDE map product, complete with 
metadata and methods documentation; and 

● Summary presentation of the project’s outcomes and results to the Groundwater TAC. 

GDEs generally fall into the following broad categories: 

● Aquatic (e.g., rivers, streams, lakes, wetlands, and springs); 

● Terrestrial (e.g., riparian areas); and 

● Subterranean (e.g., cave systems, aquifers). 

The scope of the first year of the project’s (2023/24) initial GDE mapping work focuses on 
aquatic GDEs in the OSR. 

2. Definitions and GDE Categories  

2.1 Introduction & Key Definitions 

Sustained hydrological sources are imperative to ensuring healthy ecosystem function; 
conversely, during periods of hydrological scarcity, ecosystems can undergo drastic changes 
depending on their water source. Groundwater dependent ecosystems (GDEs) have a diverse 
range from aquatic, to terrestrial, to subterranean ecosystems. While their dependence on 
groundwater contributions can fluctuate throughout the year as annual precipitation and 
seasonal demand fluctuate, the presence of these ecosystems relies on a sustained source of 
groundwater for maintaining ecosystem function (e.g., by providing hydrological and nutrient 
inputs). GDE expressions are typically observed in both above-ground expressions (lakes, rivers, 
streams, springs, and seeps during base flows) as well as subsurface presence where 
phreatophytes (deep rooted plants) access water during periods of low hydrological availability 
(Klausmeyer et al., 2018) or where there are wet cave ecosystems. Although the definitions of 
GDEs evolve with the progression of the field and are defined differently within differing 
jurisdictions, the definition set out by Rohde et al. (2017):  

“Ecosystems that are maintained by direct or indirect access to groundwater, and rely 
on the flow or chemical characteristics of groundwater for some or all of their water 
requirements''  

will be used for this project and encapsulates the generalized definition that GDEs may only be 
partially dependent on groundwater or may only demonstrate seasonal or intermittent 
dependence on groundwater. Serov and Kuginis (2017) provided a definition that emphasizes 
natural elements, and ecological aspects rather than the more generic reliance on water 
requirements:  
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“Natural ecosystems which have their species composition and natural ecological 
processes wholly or partially determined by groundwater”. 

Although natural ecosystem elements can be used to identify GDEs, this is significantly more 
challenging within cooler high-latitude environments (Autio et al., 2023), such as the boreal 
forest of Alberta. These environments typically have shortened growing seasons and less 
evaporative demands, as is the case of the wetland-dominated landscapes found in the OSR, 
where vegetation indicators are more difficult to apply. In contrast, identifying GDEs within 
southern Alberta, where higher hydrological demands occur, leverage the use of plant vigor for 
detection of surface and groundwater interactions (Van Der Kamp & Hayashi, 2009). Currently 
the definition of GDEs does not make distinctions between anthropogenic and naturally 
developed systems, however within the context of Alberta, engineered GDEs are likely an 
important component to consider as footprint is reclaimed. 

Similar to quantifying whether an ecosystem is groundwater dependent, sensitivities of GDEs 
can fall into finer class segments, and determination of ecosystem sensitivities is correlated to 
the species and environmental conditions present within the GDE. The assessment of GDE 
sensitivities can be broken down first into climate classifications. According to the 
Thornthwaite climate regimes there are broadly five categories which are identified on the 
basis of monthly precipitation to evaporation ratios (P/E): (hyper humid “wet” (127), humid 
“forests” (127-64), subhumid “grasslands” (63-32), subarid (63-32), semi-arid “steppe” (31-16), arid 
“desert” (<16)). The impacts of climatic shifts are more pronounced within arid and semi-arid 
GDE environments, due to inherent water limitations present there. Disruptions to these 
particular ecosystems makes them highly sensitive to fluctuations of groundwater, with 
noticeable effects on ecosystem community composition such as changes in vegetation 
communities from aquatic to drought tolerant species (Beasley-Hall et al., 2023; Doody et al., 
2017). As a result, the prevalence of GDEs on the landscape can easily be quantified in arid and 
semi-arid regions, as the water stress impacts plant and ecosystem functions, which is often 
first reflected in the degree of measurable vigor in vegetation. 

In high latitude climates that are not hydrologically limited, the presence of GDEs can be more 
difficult to detect. Monitoring these ecosystems at a large scale serves as a critical pillar for the 
OSM program, helping to ensure that any changes to these sensitive systems are identified 
prior to significant adverse effects. However, the first step in developing an appropriate 
monitoring program is the identification of their location within the OSR (Strategic modeling 
plan TAC, 2019). GDEs’ inclusion into the OSM groundwater monitoring framework will serve to 
highlight possible pathways through which stressors may influence these systems, while 
understanding that the degree of reliance on groundwater has the potential for partitioning 
GDEs into subcategories, which may help determine monitoring priorities. Within the OSM 
Program’s Technical Report Series Bickerton et al.’s (2018) compilation of multiple techniques 
for assessing groundwater influences within the OSR of Alberta highlights the influences of 
groundwater on surface water expressions of tributaries to the Athabasca River and the need 
for future monitoring of surface water - groundwater interactions. Specifically, there are direct 
contributions of groundwater along various reaches of the MacKay River, and, as a whole, 
groundwater might contribute as much as 35% during under ice flow compared to 2-10% 
during low flows (Bickerton et al., 2018). Thus, consideration of both average and seasonal 
contributions of groundwater to GDEs should be considered.  
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2.2 GDE Categories in Alberta’s Boreal Systems  

Groundwater dependent ecosystems fall into three categories: aquatic, terrestrial and 
subterranean.  

2.2.1 Aquatic GDEs 

Aquatic GDEs include all springs, rivers, streams, lakes, and wetlands with groundwater 
contributions. All these aquatic ecosystems occur in the Boreal region of Alberta.  

Springs occur when groundwater overflows onto the land surface and can range in size from 
small seeps to pools. Springs with high mineral content can be associated with wet mineral 
licks (or “salt licks”) which are utilized by ungulate species, can develop into muddy clearings 
(“wallows”) when used by elk and moose, and may influence the spatial structure and 
movements of ungulate populations. In the OSR, discharge of saline groundwater occurs 
where Devonian carbonate bedrock intersects the land surface (e.g., along river valleys).  

Rivers and streams can receive base flow from groundwater, which provides flow during 
low-flow and frozen conditions (e.g., supporting in-stream flow needs), constant-temperature 
water supply, and refugia for aquatic species such as fish and benthic invertebrates. Rivers and 
streams can have reaches that are “gaining” i.e. groundwater is contributing to the flow along 
these sections. During the winter, when many surface water bodies are frozen, springs and 
gaining sections of streams may remain unfrozen, providing access to liquid water for animals 
(e.g., ungulate watering holes, waterbird habitat). During frozen conditions, aufeis, or a layered 
mass of ice (also called icings), can also form from the freezing of successive flows of 
groundwater over previously formed layers of ice which can maintain unfrozen conditions 
beneath the insulating ice layer providing a perennial groundwater habitat (Huryn et al., 2020).  

Lakes with subsurface inflow contributing to the lake water balance are GDEs. Topographic 
position, bathymetry, surficial and bedrock geology, and presence/absence of permafrost are 
some of the factors that influence the groundwater dependence of lakes in the OSR.  

By definition, all wetlands classified as fens are GDEs. Fens are estimated to cover 21% of the 
recently mapped portion of the OSR (Alberta Biodiversity Monitoring Institute & Ducks 
Unlimited Canada, 2023) and are thus a critical component of GDE mapping within the OSR. 
Other classes of wetlands that may have groundwater input include shallow open water 
wetlands, marshes, and swamps.  

The movement of water between groundwater and surface water provides a major pathway 
for chemical transfer between the subsurface and surface water. For example, groundwater 
can supply carbon, oxygen, and nutrients such as nitrogen that affect biological processes.  

2.2.2 Terrestrial GDEs 

Terrestrial GDEs include vegetated land such as uplands and riparian areas where 
groundwater provides water supply for plants but where surface water may not continually 
present. These habitats often occur along rivers and streams (Luke et al., 2007) and in 
floodplains, and in upland areas where there are phreatophytes: vegetation that depend for 
their water supply on groundwater that is within the reach of their root systems.  
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2.2.3 Subterranean GDEs 

Subterranean GDEs include caves and aquifers. Caves are subterranean GDEs when the plant, 
animal, or microbial communities within depend on the presence of groundwater on a 
permanent or intermittent basis to meet all or some of their water needs. Underground caves 
and streams can form in karst landscapes, which in the OSR form from the dissolution of 
carbonate bedrock of Devonian age. At the surface, karst landscapes feature sinkholes. 
Aquifers occur in many different geological formations, and at varying depths in the OSR. 
These subterranean ecosystems are inhabited by microbial communities, and can also host 
stygofauna (i.e., aquatic animals such as arthropods and other invertebrates, as well as 
vertebrates including fishes and salamanders).  

Within Alberta, surface karstification is more prominent within the Rocky Mountains, where 
both geological formations (limestones) are susceptible to dissolution from increased 
hydrological gradients that help facilitate subterranean ecosystems to form (D. Ford, 1987; D. C. 
Ford, 1997). In the far north-east of Alberta (e.g., in Wood Buffalo National Park) hundreds of 
sinkholes are common landscape feature formed from dissolution of the at or near-surface 
Middle Devonian Elk Point Group evaporites, as well as networks of underground cavernous 
systems and prominent escarpments making this area some of the most extensive karst 
landscapes in North America (Altosaar, 2013b; Parks Canada, 2022). Many of these “karstland” 
features were mapped and reported on in 2012 and 2013 by Suncor (Altosaar, 2013a). These 
systems contrast the OSR where karst formations are primarily caused via the dissolution of 
highly soluble evaporites (halite) which are remnants of the region being an ancient inland sea 
(S. J. Birks et al., 2022; Broughton, 2018),and are located deeper in the formation offering higher 
protection by the glacial till overburden from hydrological weathering (D. Ford, 1987; D. C. Ford, 
1997).  

3. Study Area 
The oil sands region of Alberta covers 142,200 km2 in northeastern Alberta, encompassing the 
Athabasca, Peace and Cold Lake oil sands regions. These regions fall almost entirely within the 
boreal ecoregion of Alberta. Terrestrial boreal habitats are peatland dominated mix of drier 
upland and lower wetland habitats. Forested uplands consist of boreal mixed woods, mostly 
spruce or aspen dominant stands with some pine stands in areas of sandy, well-drained soils. 
Wetland habitats in the oil sands region fall into a few hydrologically- and ecologically-defined 
classes, including fens, bogs, swamps, and shallow open-water wetlands. Fire is a major natural 
driver of change in the boreal and creates a mosaic of variable forest stand ages across the 
landscape. Forestry, energy development, and other industrial operations also create 
widespread and notable linear (e.g., roads, seismic lines, pipelines) and polygonal (e.g., cut 
blocks, mines, well pads) disturbance features throughout the region. Oil sands industrial 
operations are composed of two main processes of bitumen extraction: (1) surface mining in a 
relatively contained area north of Fort MacMurray, which creates the enigmatic mines and 
roads typically associated with oil sands operations; and (2) in situ mining for below-ground 
extraction, which creates a more widespread network of roads, wellpads, seismic lines, and 
pipelines across the entire region.  
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The first year of GDE work focuses on two tributaries of the Athabasca River in the Athabasca 
Oil Sands Area north of Fort McMurray. This study area spans 3,078 km2 of the lower McKay and 
Steepbank River watersheds (Figure 1). Advice was solicited from the GoA and ECCC Technical 
Advisors for the project on Study Area selection. Of the multiple options considered for a study 
area within the Athabasca OSR, these particular watersheds represented areas where: 1) recent 
and relatively high resolution wetland inventory mapping had occurred (OSM Wetlands 
Inventory Project 2022/23); 2) multiple OSM-funded research and monitoring projects such as 
groundwater modeling, have been conducted (e.g., work by (Bickerton et al., 2018) along the 
McKay River); 3) isotope-based streamflow partitioning has revealed higher fractions of 
groundwater contributions in river tributary flows (i.e., on the east side of the Athabasca River 
(Gibson, Yi, et al., 2016)); and/or 4) a greater amount of relevant field or modeled data were 
available. These watersheds best leveraged the current knowledge and data available within 
the OSR that could support GDE mapping. The large majority (98.6%) of the selected study 
area falls within the area of the North Athabasca Oil Sands. The study area was selected to have 
upgradient areas without oil sands mining activities as well as areas with a variety of oil sands 
mining operations. This could allow for future evaluation of differences in GDE mapping in 
undisturbed and disturbed areas. 

The study area is within the McMurray Lowlands and Regional Uplands hydrogeological 
regions of Alberta and the geological history and region maps can be explored in the Alberta 
Geological Survey’s StoryMap (Alberta Geological Survey, 2021). These areas have been well 
studied from a geological and hydrogeological perspective given the prominence of oil sands 
extraction in the region. Lying between topographic high areas including Muskeg Mountain to 
the east and the Birch Mountains to the northwest, this region sits near the edge of the 
Western Canadian Sedimentary Basin where bedrock is closer to the surface than in most 
other regions of Alberta. Surficial sediment thickness varies greatly from <5m to >100 m. Local 
scale groundwater movement is driven by upland recharge areas and dynamic interactions of 
boreal wetlands with shallow groundwater. Cretaceous formations contain important 
nonsaline aquifers as well as the bitumen-bearing McMurray Formation. Devonian formations 
host saline groundwater that discharges in saline springs where the Athabasca and Clearwater 
rivers have eroded into these formations, and in some areas, ongoing dissolution of carbonate 
and evaporite bedrock continues to form karst landscapes appearing as circular ponds and 
wetlands that form above active sinkholes. Groundwater salinity is highly variable due to the 
complex geology and groundwater flow. Discontinuous permafrost exists in at least 87 small 
areas within the Study Area (Pawley & Utting, 2018).  

In the last decade, groundwater-surface water interaction in the Study Area has been studied 
for rivers, open water wetlands and lakes (Gibson et al., 2019). In the McKay and Steepbank 
Rivers isotope-based streamflow partitioning and differential gauging (Bickerton et al., 2018; 
Gibson, Yi, et al., 2016) revealed 14-45% and 4-65% (McKay) and 29-69% (Steepbank) 
contribution from groundwater (notably higher on the east side of the Athabasca River). In the 
McKay River both studies estimate an approximately 3-fold increase in groundwater 
contribution in the winter compared to the fall. Between ~20-50% of shallow open water 
wetlands are groundwater reliant based on wetland water balance calculations using water 
isotope data collected by ABMI and analyzed by InnoTech Alberta between 2009 and 2019 
(Gibson et al., 2022). In the study area northeast of Fort McMurray lake water quality was 
monitored for over 15 years under the Regional Aquatic Monitoring Program (RAMP, Joint Oil 
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Sands Monitoring Program (JOSM) and OSM evaluating water balance, permafrost thaw and 
pH changes (Gibson et al., 2019) .  

 The study area map (Figure 1) shows the area of interest (focused on the McKay and 
Steepbank watersheds) and the larger analysis boundary area. Data was acquired for the 
analysis area and processed prior to clipping to the smaller area of interest. Analyzing the 
larger area of analysis allowed for the establishment of baseline environmental and geological 
conditions, offering background details that aid our understanding of the specific 
characteristics defining our area of interest. The expanded analysis area helps to identify 
potential external influences that might not be within the area of interest, but could have 
effects on it. In this report, maps reflect the larger area of analysis to provide the important 
context as identified above, evaluation and discussion of outcomes does, however, focus on the 
smaller area of interest.  

 

 

Figure 1. Map of the study area in the Alberta Oil Sands Monitoring program area, showing 
the area within the Northern Athabasca Oil Sands Region, the area of interest, the analysis 
boundary, and human footprint components. 
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4. Literature Review: Indicators of GDEs 

4.1 Groundwater Indicators for GDEs 

4.1.1 Overview 

A comprehensive literature review was conducted by search for keywords “Groundwater 
dependent ecosystem*”, “mapping”, “machine learning”, “peatland*”, “groundwater surface 
water interaction”, “Athabasca oil sands region”, “karst”, “eskers”, “surficial geology”, “EM survey”, 
“spring*”, “seep*” within the peer-reviewed literature and leveraging key papers (Table 1). 

Focus was given to surface and groundwater interaction, groundwater indicators, and 
mapping of GDEs within Boreal environments, with a total of 48 papers reviewed. These 
papers focused on the geographical regions of Alberta and outside of North America (World). A 
total of 4 review papers were used to guide current methods for mapping of GDE systems. The 
main focus areas of the literature broadly focused on five main topics (Isotope & Geochemical, 
GDE mapping, Modelling, Lake, Rivers, Wetlands), with papers able to fall within multiple 
topics (see Tables B.1 and C.2 in Appendices B and C, respectively).  

Table 1. Summary of number of papers included in the literature review of groundwater 
indicators of GDEs, summarized by the geographic location of study or interest (top) and by 
topic focus area (bottom). Note that some manuscripts discussed more than one topic focus 
area and so may be counted in multiple groups. Full citations are provided in Appendix B. 

 Geographic Location 

 Alberta Canada Outside Canada Review Total 

Number of papers 22 2 20 4 48 

 

 Topic Focus Area(s)* 

 Isotope and 
Geochemical 

GDE 
Mapping Modeling Lakes Rivers Wetlands 

Number of Papers 31 22 16 12 17 24 

 

Foundational grey literature on GDEs from Alberta the OSR was included in the literature 
review as well including but not limited to an appendix developed by the Government of 
Alberta on GDEs for Groundwater Management Frameworks and Bickerton et al. (2018). 
Methods for measuring aquatic GDEs, and specifically surface water - groundwater interaction 
in the Athabasca oil sands region are described in Birks et al. (2012) including field and desktop 
methods.  
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4.1.2 Direct Groundwater Indicators  

Birks et al. (2012) summarizes methods for monitoring direct indicators. These include, but are 
not limited to, physical indicators (e.g., groundwater levels, seepage measurements), locations 
of springs, aufeis (see also Ensom et al., 2020; Huryn et al., 2021),and other indicators discussed 
below.  

The physicochemical properties of surface water can give insights into the presence of GDEs. 
More specifically, measurements of temperature and conductivity can aid in identifying GDE 
presence when assessing groundwater that has had mineral interactions. The temperature of 
groundwater primarily reflects the average seasonal temperature of the region (J. S. Birks et al., 
2012; Hayashi & van der Kamp, 2023)  such that during summer months in particular, there is a 
higher contrast between cool groundwater seeps and warmer surface waters (Bertrand et al., 
2014; Pérez Hoyos et al., 2016). These temperature differentials can also be indicative of aquatic 
systems that are recharging or discharging groundwater, allowing for source and direction of 
surface and groundwater interactions to be inferred (Bertrand et al., 2014; Watts et al., 2023) . 
Temperature can be measured directly or via remote sensing. Solute loading within water 
increases its conductance, which are reflected in physicochemical differences with higher 
specific conductance, variation in pH and oxidation reduction potentials dependent on which 
mineral substrate water has come into contact with (A. Gue et al., 2018; A. E. Gue et al., 2015).  

Additionally, direct indicators of GDEs can be expressed through hydrochemical facies that 
exhibit increased dissolved solutes in the form of dominant cation and anions, which are 
indicative of longer temporal scales of water and mineral interaction (S. J. Birks et al., 2022; 
Gibson et al., 2013; Manchuk et al., 2021; Wells & Price, 2015). Depending on the dominant cation 
and anions present, these ions can give indications about whether hydrological sources are 
from deep basin brines (primarily halite dissolutions), or shallow glacial tills (carbonate and 
silicates) (J. S. Birks et al., 2012; S. J. Birks et al., 2022; A. E. Gue et al., 2015). These deep aquifer 
systems access the surface through evaporite channels and karst systems which allow for the 
presence of highly saline groundwaters to migrate to the surface (Broughton, 2018; Hein & 
Cotterill, 2006; Walker et al., 2017; Wells & Price, 2015). Salinity can also be influenced through 
evaporation effects:  minerals can precipitate, forming mineral deposits at the surface that can 
then be redissolved with precipitation or snowmelt. The latter process is seen in the prairie 
pothole regions of Alberta (Hayashi et al., 2016). Depending on hydrological contributions and 
processes, the characterization of GDEs can be limited when using salinity alone as an 
indicator of GDEs presence and should be used in conjunction with hydrological tracers.   

The extensive use of stable isotopes and radioactive tracers can offer unique tracers to identify 
hydrological systems under the influence of groundwater. Both deuterium and oxygen-18 (2H, 
18O) are stables isotopes which fractionate at predictable intervals and have been used to 
partition surface and groundwater contributions to many aquatic features (lakes, rivers, and 
wetlands) - as they are components of the water itself, they make ideal tracers to infer 
hydrological contributions and processes of aquatic systems (Gibson, Birks, et al., 2016; Gibson 
et al., 2019, 2020, 2022; Gibson, Yi, et al., 2016; Gibson & Peters, 2022). Isotope ratios of other 
solutes, including sulfate and strontium, among others, can also be helpful in tracing 
groundwater - surface water interactions.         

The use of radioactive tracers is another tool for inferring contributions of groundwater to large 
aquatic systems. Radon (222Rn) occurs from the decay of radium-226 parent material. As it is a 
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noble gas, it does not participate in any biological or chemical processes with which it comes 
into contact, and has a relatively short half-life of ~72 hours. It has been used to quantify water 
budgets of lakes, most notably in two boreal lakes within the OSR, which found that 
groundwater contributions in the lakes varied from (0.5% to 14% annual flows) and that 
catchment size and benthic sediments are likely to play a controlling role in groundwater 
contributions (Schmidt et al., 2010). Due to the short half-life of Radon, it has the ability to be 
used to rapidly assess groundwater inputs, contrasting the longer temporal time frame for 
stable isotopes, which allows for complementary information on lake water budgets (Arnoux et 
al., 2017). A limitation of Radon is that it requires mineral parent materials and can be 
influenced by long transit times within peat, reducing some of its use in heavily organic 
substrates as a tracer for groundwater (Schmidt et al., 2010).        

4.1.3 Indirect Groundwater Indicators  

Geophysics and remote sensing approaches can be used for mapping the groundwater table 
(J. S. Birks et al., 2012). In the oil sands region, recent work by the Boreal Ecosystem Recovery & 
Assessment program demonstrated the use of orthophotography and photogrammetric point 
clouds for mapping groundwater level and depth to water (Rahman et al., 2017).  

Within river and stream systems, gaining and losing reaches can be quantified during 
baseflow, giving indications of the potential for regions with both groundwater discharge 
(GDEs) and recharge areas. This can be accomplished via flow gauging, hydrographic analysis 
and isotope partitioning (Bickerton et al., 2018; J. S. Birks et al., 2012; Gibson, Yi, et al., 2016).  

In addition to direct physicochemical indicators, physical landscape and subsurface features 
can also play an important role in assessing the presence of GDEs but are considered indirect 
indicators. Such features include the topography of the landscape, and surficial and bedrock 
composition. Topography plays a role in the assessment of GDEs with low lying areas having a 
higher chance for seeps and springs from groundwater to occur (Freeze & Cherry, 1979; Heagle 
et al., 2013) . Groundwater within these locations is more likely to collect and can indirectly be 
modeled through geospatial mapping techniques by assessing flow directions and flow 
accumulations, which highlight regions where water is more likely to collect. These low-lying 
areas are contrasted by higher elevation areas which are less likely to be GDEs and more likely 
to be perched hydrological features (Heagle et al., 2013).  

Hydrogeological mapping of geological and hydrological properties of the subsurface provides 
conceptual/indirect understanding of GDEs (see Figure A.1 and Figure A.2 in Appendix A). 
Surficial and bedrock geological compositions influence the movement of groundwater in 
both discharge and recharging systems (S. J. Birks et al., 2019, 2022; Broughton, 2018; Freeze & 
Cherry, 1979; Hein & Cotterill, 2006). Differences in surficial materials primarily control the 
permeability of the soil structure (Hein & Cotterill, 2006). Features with coarse textures and 
larger pore spaces (e.g., sands and gravels) allowing for increased hydrological conductivity and 
a higher probability of being a GDE if positioned in low lying areas on the landscape. These 
contrast with fine-textured materials (silts, clays) which typically impede flows (S. J. Birks et al., 
2019, 2022; Hein & Cotterill, 2006). Recent higher resolution mapping of quaternary surficial 
layers has highlighted the interconnectivity of both buried channels and surficial geological 
formations (Andriashek, 2001, 2007; Atkinson, 2022a, 2022b, 2022b; Atkinson et al., 2013; 
Atkinson & Pawley, 2022; Pawley & Atkinson, 2022; Utting, 2023), which likely play a controlling 
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force on the presence of GDEs within the OSR through vertical groundwater discharge (Hein & 
Cotterill, 2006; Wells & Price, 2015).  Bedrock structure can influence the hydrological 
connectivity with buried channels and fractured rock systems which allow for hydrological flow 
to migrate to the surface; these contrast with impervious layers which will act as hydrological 
barriers (S. J. Birks et al., 2022; Broughton, 2018). In areas where these channel and fracture 
features have been mapped there could be a higher probability of GDEs being present on the 
landscape.  

These indirect indicators can be brought together in 3D numerical groundwater models and 
used to identify areas of groundwater interaction with the land surface (e.g., Aquanti HGS and 
McKay River Integrated Surface Water-Groundwater (J. S. Birks et al., 2012) models).  These 
models can be very useful in testing scenarios of water use and climate change, and to inform 
field campaigns, but can be data hungry, costly and time consuming to develop. The most 
relevant types of numerical groundwater models for studying GDEs are integrated surface 
water - groundwater interaction models such as GS-FLOW, HydroGeoSphere (HGS), Parflow 
and MIKE SHE. A coarse-resolution regional-scale HGS model for the Athabasca River Basin 
was created by COSIA, and is used in this study. As well as a tributary-scale model using 
GS-FLOW for the McKay River watershed (originally created for CEMA, and updated for ECCC 
and OSM). Other types of groundwater models (e.g., MODFLOW, FEFLOW) are not as rigorous 
for estimating surface water contributions to aquatic ecosystems, but do exist in other areas of 
the OSR.  

4.2 Biological Indicators for GDEs 

4.2.1 Overview 

A comprehensive literature review of aquatic GDEs was conducted using Web of Science and 
the keywords: groundwater; groundwater indicator; groundwater dependent ecosystem; 
indicator; bio*; biol*; Alberta; Canada; boreal; north*; fen; swamp; microb*; stygo*; macrophyte; 
vegetation; vascular plant; moss; bryo*; fauna; geophagy; mammal*. In total, 28 papers were 
used in review (Table 2). Selected papers were leveraged by reviewing both cited papers within 
a manuscript and papers that had cited that manuscript since its publication, i.e., the citation 
network function in Web of Science. Papers were evaluated based on their relevance in 
establishing empirical evidence to support indicator development for GDEs. ‘Indicator’ in this 
context was considered both from the perspective of biological metrics that could identify the 
location of GDEs and as biological metrics that could be used to monitor impacts of 
development and operation of industrial facilities (i.e., ecological endpoints). Review papers 
were considered valuable. Several papers that aimed to assess stressor impacts to GDEs 
simultaneously provided evidence in support of selected biological indicators of GDE presence. 
Relatively few assessed stressor impacts without providing such evidence. Papers from Canada 
were prioritized, followed by papers from areas with boreal, and then otherwise forested, 
landcover (e.g., Finland, Switzerland, France, United States). Papers from Australia were 
considered low priority due to fundamental differences in glacial history, ecology, and geology 
when compared to northern Alberta and due to their focus on arid environments.  
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Table 2. Summary of number of papers included in the literature review of biological 
indicators of aquatic GDEs, summarized by the geographic location of study or interest (top) 
and by topic focus area (bottom). “Other” is inclusive of Ionescu et al. 2022 and Driscoll et al. 
2019, focused on biotic homogenization and natural range of variability, respectively. Note 
that some manuscripts discussed more than one focus area or indicator and so may be 
counted in multiple groups. Full citations are provided in Appendix C. 

 Geographic Location 

 Alberta Canada Outside 
Canada Review Total 

Number of papers 7 8 9 4 28 

 

 Topic Focus Area 

 Vegetation 
Macroinverts, 
Microbes, 
Stygofauna 

Mammals Other Background 

Number of Papers 11 12 2 2 2 

 

The literature review made clear that there is limited research and therefore limited 
understanding of the role of groundwater in structuring and maintaining the biological 
components of aquatic GDEs in boreal ecosystems or limited understanding of what those 
components may be, particularly in the case of stygofauna and microbial communities. 
Broadly, the conceptualization of groundwater systems as ecosystems, with associated biota 
above and belowground, is an emerging theme in the literature. However, this work is more 
advanced in Australia than in other global locations (Hancock et al., 2005) and thus may not be 
specifically relevant to the boreal environments that were the primary focus of this review.  

Biological indicators were rarely used to map aquatic GDEs (but see Graillot et al., 2014). Rather, 
biological indicators were more typically used to identify groundwater influence at local scales 
(Larocque et al., 2016; Munger et al., 2014)or as receptors of groundwater mediated effects, such 
as land use and contamination impacts (Ionescu et al., 2022; Lehosmaa et al., 2018). Changes in 
biological indicators can  be monitored at a variety of ecological scales–individuals, 
populations, and communities–and metrics can include the condition, productivity, 
demographics, structure, or function of a range of indicators, from species to ecosystems 
(Eamus et al., 2006; Oiffer, n.d.). To address the complexity of ecological systems, indicator 
approaches such as sentinel species may be appropriate, particularly as larger scale change, 
such as to ecosystem structure and functions, may be slow to manifest (Rohde et al., 2017) or 
may be missed in the context of the natural range of variability of the larger GDE. 

Grey literature was not targeted in the review and is not captured here but could be a valuable 
source of knowledge for future review. Notably, a draft report prepared by the Government of 
Alberta (Oiffer, n.d.) and made available for this project provides broad categories of biological 
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indicators based on methods described in Eamus et al. (2006) for health of groundwater 
dependent vegetation.  

4.3 Biological Indicators of Terrestrial and Subterranean GDEs 

The 2023-24 biological indicator literature review was not comprehensive of subterranean and 
terrestrial GDEs, excluding manuscripts focused on ground- and surface-water interfaces that 
included subterranean indicators and associated discussion of subterranean groundwater 
resources. These indicators, specifically microbial and stygofaunal components, are discussed 
below in the context of aquatic GDEs. In the context of future work to review biological 
indicators of subterranean GDEs, the review paper of Mammola et al. (2020) poses 
expert-determined fundamental research questions related to subterranean GDEs and may 
make a good starting place. Conservation related questions posed by the authors, e.g., “What is 
the impact of above-ground disturbance on subterranean environments and their fauna” 
(Mammola et al., 2020)highlights the limited work that has been done and the outstanding 
gaps in our collective understanding of subterranean GDEs and their response to 
anthropogenic activity. Additional literature review in future years will allow us to provide a 
comprehensive review of biological components of subterranean GDEs and how they may 
respond to groundwater changes in the OSR. 

Precursory scanning of the literature regarding biological indicators in terrestrial GDEs in 
Alberta and Canada resulted in papers focused on wooded riparian forests. Broadly, terrestrial 
GDEs are often tied to the presence of phreatophytes, a term that describes deep rooted trees 
and shrubs that can grow in dry environments by accessing sub-surface water and which have 
high transpiration rates. Research examples from Alberta focus on cottonwood-dominated 
riparian forests, where cottonwoods (Populus deltoides or Populus trichocarpa) are 
phreatophytes, in semi-arid southern Alberta. These forests are reliant on groundwater, 
especially during drought events (Tai et al., 2018; Zimmerman et al., 2023), with similar patterns 
observed in semi-arid to arid regions of the United States (Graup et al., 2022). It is possible that 
the related balsam poplar (Populus balsamifera), which occurs in the boreal, could be 
indicative of terrestrial GDEs, although this species is widespread in mesic to hygric forests. 
Cottonwoods, poplars and willows are considered keystone species for some Indigenous 
peoples in Alberta, and their distribution is known to have changed along riparian areas, even 
as recently as in the last 40 years.  

Research specific to Alberta’s boreal included mixed-wood forest stands on saline soils (trees 
are typically intolerant of saline soil) in proximity to salt pans and saline wetlands, which are 
likely GDEs (Lilles et al., 2010). Outside of Canada, the review of Chiloane et al. (2022) provides 
an excellent starting place. The authors list indicators related to vegetation, including 
phenology, advocate for the use of remote sensing in identifying terrestrial GDEs, and note 
that “So far, groundwater-vegetation interaction monitoring has been limited by the trade-off 
that exists between the costs, efficiency, and level of detail offered by the techniques 
employed” (Chiloane et al., 2022). Aside from vegetation, an assessment of microbial 
communities found distinct differences between groundwater and geological material 
samples, indicating that unique communities occupy subsurface terrestrial environments 
(Meyer et al., 2022). Meyer et al. (2022) observed a decrease in bacterial and archeal abundance 
and diversity with depth, but interpreting depth trends in eukaryotic microbial abundance was 
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not possible due to low populations and sequence numbers in the deepest samples (approx. 
50m).  

A comprehensive literature review for biological indicators of terrestrial GDEs is scoped for 
completion in future years, concurrent with mapping of these ecosystems. 

4.3.1 Vegetation Indicators of Aquatic GDEs 

Vegetation indicators of GDEs are inclusive of vascular and non-vascular plants. Generally, 
vegetation is indicative of local conditions because individual plants are fixed in space and 
must respond to local conditions. The literature regarding vascular and non-vascular plant 
indicators for GDEs in Alberta and Canada is sparse. Springer et al. (2015) detected 25% of 
Alberta’s native plant taxa in southern Alberta spring habitat. What may be most useful for 
future GDE mapping efforts in the boreal that use existing datasets and map products is the 
association of specific wetland types with groundwater. Among wetland classes in Alberta, fens 
are, by definition, influenced by groundwater, whereas bogs are disconnected from it (AESRD, 
2015). Fens occur along a gradient from poor to extreme rich, which is understood to align with 
either or both the quantity or mineral composition of groundwater inputs (Vitt & Chee, 1990). 
The influence of groundwater in swamps remains poorly understood but presumably present 
(Elmes et al., 2021). 

Existing documentation of species that are associated with water exchange or richer fen types 
can be leveraged when identifying GDEs within the boreal. In our study area, vascular and 
non-vascular species including bryophytes such as rusty peat moss (Sphagnum fuscum) and 
narrowleaf peatmoss (Sphagnum angustifolium), sedges such as few-seeded sedge (Carex 
oligosperma), and shrubs such as leatherleaf (Chamadaphne calyculata) are associated with 
bogs or very poor fens, while bryophytes such as small greasewart (Aneura pinguis), 
three-ranked thread moss (Meesia triquetra), Knieff's hook-moss (Drepanocladus aduncus), 
and Cosson’s hook moss (Scorpidium cossoni [syn: Limprichtia cossonii), as well as sedges such 
as tufted clubrush (Scirpus cespitosus), and flowering plants such as sticky false asphodel 
(Triantha glutinosa) are indicative of alkaline, rich, wet fen types (Glaser et al., 2004; Vitt et al., 
2022; Vitt & Chee, 1990). However, the use of vegetation indicators of groundwater influence 
should be tempered by several factors. First, fen communities that are out of sync with 
groundwater inputs can occur where surface runoff due to snowmelt is a substantial input 
(Cooper & Andrus, 1994). Second, the boreal is dominated by a stress-tolerant, generalist 
flora(Crisfield et al., 2019) ; the flora that occupies boreal peatlands shows high fidelity to 
peatlands, but single species or groups of species are rarely perfect indicators of specific 
peatland types and their underlying groundwater conditions. For example, Laroque et al. (2016) 
and Munger et al. (2014) investigated indicator species of groundwater exchange between a 
peatland and an aquifer in Quebec, with Laroque et al. (2016) stating that “the identified 
species (or combinations of species) do not have a 100% indicator value. There is a clear 
tendency for the species to be indicative of groundwater inflow, but they are not perfect 
indicators since an indicator species can be found in a peatland where there is no 
groundwater inflow, and vice versa." (Larocque et al., 2016).  

A species summary table provided by (Jeglum, 1991), who aimed to classify wooded peatlands 
in Ontario using plant indicators, shows very few species being exclusively restricted to specific 
peatland types. In a study focused on vegetation patterning and landscape evolution in the 
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Hudson Bay Lowlands, the authors note that “no species were solely restricted to bogs'' when 
assessing multiple peatland types (Glaser et al., 2004). Instead, it is often the presence, 
absence, and abundance of species within a community and species richness that together 
discriminate areas of greater or lesser nutrient status, i.e., groundwater input, and help to 
distinguish among peatland conditions. An investigation of plant assemblages and water flow 
from Sweden found higher species richness in areas of groundwater discharge, and that 
discharge effectively extended the distance at which riparian conditions persist from lotic 
systems (Kuglerová et al., 2016). In a review, Land & Peters (2023)note that the richness of 
aquatic vegetation tends to be greater in areas with groundwater inputs. Notably, aquatic 
vegetation has been proposed as an indicator of reclamation progress in the OSR, where 
aquatic indicator species have been shown to be responsive to salinity, water and sediment 
nutrient levels, and alkalinity (Rooney & Bayley, 2011). 

Patterns among bryophytes, i.e., non-vascular plants, inclusive of mosses, hornworts, and 
liverworts, are consistent with those found in vascular plants, although bryophytes may display 
relatively greater indicator value for specific peatland types (Vitt et al., 2022). Lehosmaa et al. 
(2018) found that specialist aquatic bryophyte species declined significantly, but generalist 
aquatic species did not, in the presence of contaminants in boreal spring ecosystems in 
Finland. An interesting component of boreal flora is saline wetlands, which host a relatively 
unique vascular plant species assemblage and a lack of bryophytes that is rarely found 
elsewhere. Saline wetlands host species including flowering plants such as marsh samphire 
(Salicornia europaea), saline plantain (Plantago eriopoda), and willow (Salix sp.), which are 
rarely found in other wetland types, as well as grasses such as seaside arrow-grass (Triglochin 
maritima), sweetgrass (Hierochloe hirta [syn: Anthoxanthum hirtum]), foxtail barley (Hordeum 
jubatum), and Nuttall’s alkali grass (Puccinellia nutalliana), which are found in other saline or 
non-saline habitat types, including some uplands. As described in Wells & Price( 2015)saline 
fens are exceptionally rare in boreal Alberta, typically found near rivers and, rarely, far from river 
systems. Species occupying these saline systems have few observations across the boreal and 
are therefore poor candidates for spatial modeling or generally for widespread monitoring 
initiatives, but their observation can provide a clear indicator of groundwater influence or 
otherwise unique environmental conditions in the boreal. 

4.3.2 Invertebrates, Microbes, and Stygofauna as Indicators of Aquatic GDEs 

Animal and microbial taxa are critical components of GDEs, contributing substantially to their 
functioning (Hancock et al., 2005). To date, very limited work to document or relate faunal and 
microbial components to groundwater attributes has been done in Canada. Examples from 
Canada have sought to understand pattern in macroinvertebrate taxa within areas of 
groundwater exchange in streams (i.e., the hyporheic zone) in Ontario (Fraser & Williams, 1998; 
Williams, 1993) and to characterize archaeal, bacterial, and eukaryotic community diversity and 
structure in aquifers and their connected surface water in Quebec (Groult et al., 2023).  While 
these taxa are currently understudied in relation to GDE, advancements in techniques 
including genomic approaches, may provide effective monitoring opportunities.  

It is expected that areas of upwelling groundwater should create niches for 
macroinvertebrates, but research in this area is limited (Land & Peters, 2023). 
Macroinvertebrate assemblages in the hyporheic zone in Ontario have not shown tight 
associations specifically with either groundwater or surface water, suggesting community 
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(Fraser & Williams, 1998; Williams, 1993). In Finnish boreal springs, macroinvertebrates were 
shown to shift in taxonomic richness and community composition in response to 
contamination from nitrates and to contamination from nitrates and increased dissolved 
organic carbon from land drainage , respectively (Lehosmaa et al., 2018). In Japan, a recent 
study collected data of benthic invertebrates from literature on a global scale analyzing their 
taxonomic and biological habitats and presented biological indicators to evaluate the degree 
of dependency on groundwater springs (Sun et al., 2020). 

Microbial communities in groundwater are unique relative to surface waters and are important 
for biodiversity, nutrient cycling, including carbon cycling, and contaminant mobility (Land and 
Peters, 2023). The work of Groult et al. (2023) in Quebec showed significant differences in the 
microbial communities of aquifers and surface waters, assessed using an amplicon 
sequencing approach, but the authors note that research in this area is in its infancy. 
Groundwater ecosystem diversity, based on similar taxa discussed in Groult et al. (2023), was 
assessed using eDNA sequencing in kettle hole wetlands in Germany, with the authors 
concluding that this approach was useful for cross-domain biodiversity assessment, but 
limited for single-taxa assessments (Ionescu et al., 2022). Febria et al. (2012) report that the 
bacterial community of the hyporheic zone of an intermittent stream in Ontario was 
responsive to various groundwater parameters, including water intermittency, temperature, 
and phosphate concentration. In a novel study relating macroinvertebrates, bryophytes, 
periphyton, and bacterial ecosystem components of Finnish boreal springs to land use 
intensity and groundwater contamination, Lehosmaa et al. (2023) found that bacterial 
communities shifted in response to groundwater contamination. Bacterial communities were 
assessed using DNA sequencing techniques (Lehosmaa et al., 2018). Recent work 
demonstrated that diverse microbial communities are widespread and surprisingly abundant 
in Albertan aquifers, particularly in older and deeper groundwaters (Ruff et al., 2023). 

Stygofauna is a collective term describing animal species that are adapted to and live within 
groundwater. Generally, stygofauna are believed to be critical to groundwater ecosystems for 
their role in trophic structure, mediating microbial assemblages, and bioturbation (Hose et al., 
2022). Observations of stygofauna inhabiting caves and groundwater in Alberta is limited to 
species descriptions from single locations near Rocky Mountain House and Castleguard Cave, 
a Cambrian limestone cave near Banff (Bousfield & Holsinger, 1981; Holsinger, 1980). However, 
stygofauna are better understood elsewhere, e.g., parts of Europe and Australia and have been 
strongly supported as indicators of GDEs that are known to decline with declining water 
quality (Hancock et al., 2005). Stygofauna may be relevant indicators of groundwater-surface 
water exchange.  Research has identified that stygofauna may be both good indicators of GDE 
and useful in measuring changes in groundwater contribution and quality in GDE systems 
(Graillot et al., 2014; Hose et al., 2022). Stygofauna were used to identify groundwater upwelling 
in a Swiss study seeking to improve integrative mapping of surface and groundwater 
interactions. The authors used absolute and relative stygofauna richness, stygofauna 
abundance, and the ratio of stygobite to epigean species as indicators of groundwater 
presence, obtained from samples taken at 50 cm depths (Graillot et al., 2014). Interestingly, they 
found no significant correlation between hydraulic and groundwater fauna metrics, but found 
“surprisingly good congruence of results” between them (Graillot et al., 2014). The authors note 
that the indicator value of stygofaunal metrics may be more limited in regions affected by the 
most recent glaciations due to low presence of these species, although Holsinger (1980) 
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posited that refugia for stygofauna may have been present in Alberta during glaciation. Finally, 
Graillot et al. (2014) note that sampling time and identification of stygofauna require high effort 
and expertise. A European-based global database providing stygofauna datasets from various 
research and other investigation, Stygofauna Mundi, is now in operation, but currently has no 
records from Canada and only a single record from the United States (Martinez et al., 2018). In 
Australia, eDNA has been proposed as a suitable approach for characterizing subterranean 
stygofauna (Saccò et al., 2022), in turn allowing for better understanding of subterranean 
ecosystems where they interact with aquatic systems. In a review, Hose et al. (2022) describe 
the utility of trait-based approaches to examining stygofaunal responses to change in 
groundwater quality and quantity. The authors describe that stygofaunal traits tend to be 
limited, with low variability, likely due to the immense selective pressure of their environment, 
which makes these taxa highly vulnerable to change (Hose et al., 2022). Finally, an assessment 
along a 40 km stretch of a large river in France concluded that stygobite fauna had the highest 
richness and abundance in upwelling zones, were tied to river features such as meanders and 
morainic hills, and showed little relationship with sediment size (Dole-Olivier et al., 2022). 

Macroinvertebrates may be the most straightforward to sample, as several examples of 
sampling techniques targeted to groundwater-associated species/communities are described 
in the literature, although we note that some techniques require leaving sampling “pouches” 
out for most of a calendar year. Macroinvertebrate expertise is also available within the ABMI. 
There are some known macroinvertebrate data from the region (e.g., CABIN, OSM, ABMI, ECCC) 
but the utility of the existing data for GDE applications has yet to be investigated. Microbial 
and stygofaunal community sampling requires more complex sampling equipment that 
allows the observer to penetrate the substrates (for the former, similar to groundwater 
sampling methods). However, the literature does provide helpful guidance in understanding 
microbial operational taxonomic units and stygofaunal genera found elsewhere. Expertise in 
eDNA and DNA barcoding approaches is well established within InnoTech Alberta and the 
University of Calgary. And there is ongoing collaborative groundwater microbiome research in 
Alberta led by University of Calgary in collaboration with Environment and Protected Areas, the 
Alberta Geological Survey and ABMI through the Alberta Innovates Water Innovation Program 
(Ruff et al., 2023).     

4.3.3 Ecological Endpoints of Aquatic GDEs 

The literature review underscored the importance of understanding GDEs as ecosystems, 
which remains a novel concept in conservation. We currently lack enough understanding of 
boreal aquatic GDEs to be able to characterize or speculate on how they may respond to 
anthropogenic stressors, as we do not yet understand their components or interactions with 
other ecosystems or higher order taxa, e.g., upland areas and mammals. This is highlighted, for 
example, by Land and Peters (2023), who end their review with a call for research into the 
relationships between biodiversity and stream and groundwater ecosystems (Land and Peters, 
2023). These fundamental relationships are well understood, with decades of research and 
documentation, for many above-ground ecosystems. 

It is difficult to speculate on the potential vulnerability and responses of biological components 
of aquatic GDEs to changes in groundwater quality and quantity with the current level of 
understanding of them in Canada. The Nature Conservancy, in a guide for practitioners 
seeking to determine groundwater thresholds for ecosystems, describes the importance of 
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cause and effect chains when establishing groundwater thresholds (Rhode et al., 2020). These 
chains are described for species that directly rely on groundwater, e.g., aquatic fauna like fish or 
snails, and those that indirectly rely on it, e.g., birds or mammals that use riparian or 
wooded/shrubby peatland habitat (Rhode et al., 2020). Fish depend on groundwater because it 
provides stable temperature in the hot and cold extremes of temperate climates, maintains 
ice-free areas in winter, and provides flow (Power et al., 1999). As we gain insight into the extent 
of groundwater reliance in boreal ecosystems, we can begin to establish these chains, i.e., 
stressor-pathway-response relationships.  

Licks are places where animals ingest mineral soil, a phenomenon known as geophagy. Licks 
can be wet or dry; in an exploration of animal use of licks in northern British Columbia, Ayotte 
et al.( 2006) explains that “Wet licks are associated with apparent groundwater springs. Dry 
licks usually occur along streams or riverbeds, where unweathered deposits of soluble 
elements have concentrated above less impervious layers, and become exposed by erosion”. In 
northern Alberta, Indigenous Knowledge understands relationships between mammals and 
licks, which are likely GDEs in many places, but little western science research has focused on 
this topic. Mammals in the boreal likely utilize wet licks, which are aquatic GDEs. One example 
from Alaska reported that "local observations suggest that… hare populations in areas with 
known licks appear to reach higher densities during the population high compared to areas 
where there is no known lick" (Worker et al., 2015). Based on this, the authors used a captive 
study that concluded that mineral soil appeared to allow snowshoe hares (Lepus americanus) 
to minimize body mass loss, and they consumed more food when mineral soil was made 
available to them (Worker et al., 2015). From a stressor-pathway-response perspective, 
groundwater drawdown in response to water withdrawals could reduce lick availability, which 
could in turn affect the forage use and functional responses of mammals like hare or 
moose(Ayotte et al., 2006; Worker et al., 2015). Indigenous insight into such relationships will be 
invaluable going forward. 

An interesting example from Germany also highlights potential ecological endpoints resulting 
from change in groundwater. In brief, the authors speculated that groundwater-connected 
pothole wetlands in natural grassland and forest areas would be closer to the natural, 
pre-intensive agriculture conditions than those in agricultural fields. Instead, they found 
evidence of biotic homogenization across all ponds, presumably a product of intensive land 
use and landscape-level nutrient enrichment that was propagated across wetlands by 
groundwater connectivity among them (Ionescu et al., 2022).  

As per the conceptual model (Figure 1), it is possible that stressors such as landscape 
disturbance, operational spills and leaks, and mine dewatering, may alter local groundwater 
ecosystems in the OSR, and that these effects could be realized at the landscape level due to 
groundwater connectivity, resulting in biotic homogenization as seen in Ionescu et al. (2022), 
i.e., negative effects to terrestrial and aquatic ecosystem health, but at this time we lack an 
understanding of homo- or heterogeneity in GDEs in the boreal. Further, broadly speaking, 
change in groundwater quantity may relate to or potentially advance peatland drying, which is 
known to increase vulnerability to wildfire, alter carbon dynamics, shift species composition, 
and alter the hydrological function of peatlands in their catchments such that stream flows are 
ultimately affected (Goodbrand et al., 2019; Miller et al., 2015)). While climate change is known 
to cause peatland drying in the boreal, anthropogenic factors (e.g., roads) associated with oil 
sands development are also culpable (Miller et al., 2015). The role of groundwater flow in 
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promoting drying is an important area for further consideration, as this phenomenon may act 
as a pathway causing change in terrestrial and aquatic ecosystems under the stress of reduced 
groundwater quantity. Finally, it is likely that Indigenous Communities already hold knowledge 
on groundwater relationships in the boreal, forming the basis for their often-expressed 
concerns regarding landscape-level drying and a holistic understanding of water drawdown 
affecting multiple ecosystems.  

5. Data Compilation  

5.1 Data Considered 

For this project, it was important to understand the broad set of data that could potentially be 
used to inform mapping of GDEs in the chosen study area. Various data that were considered 
for identifying the presence of GDEs are presented in Table 3. These datasets include data that 
was collected in the field (e.g., hydrologic data, isotope analysis, water quality), geologic 
mapping products, remote sensed data (e.g., DEM derived from lidar) and modeled data (e.g., 
Aquanty HGS output). Considering a broad set of data provided the best opportunity to 
develop an approach to mapping that would negotiate the variability in resolution, the relative 
value of the data in identifying GDE, and the availability of data.  

Digital Elevation Models (DEMs) and flow-related data are important for providing the terrain 
layout which influences hydrological processes, and how water moves and accumulates in a 
landscape. Geological data including bedrock types and their permeability show where 
subsurface conditions could affect groundwater storage and flow; this impacts the availability 
of water to sustain GDEs. Groundwater data pertaining to water levels and chemistry help to 
describe the physical dynamics and quality of the groundwater, which both impact and 
indicate GDEs. Water use data gives a picture of human extraction patterns, which can alter 
the availability of groundwater for GDEs. Landcover data, such as ecosite classification, 
vegetation types, and historical forest fire record, provide context on biological diversity and 
physical indicators that may influence the likelihood of GDE presence. Isotope sampling and 
hydrometric monitoring from rivers and lakes provide data on the water cycle, which can 
support estimation of the relative contributions of groundwater and surface water. Finally, 
wetland mapping provides information on the types of wetlands present, which, by definition, 
can indicate the presence of a GDE. Together, these datasets may be used to support the 
mapping of GDEs but may also be useful for predicting risk and vulnerability of GDE to oil 
sands-related impacts.  

We also requested thermal imagery from both ECCC studies from the McKay River and COSIA, 
however that data will not be available for broader use, including for GDE mapping, until 
2024/25.  

Table 3. Types of data that were considered with their purpose.  A full list of all the datasets 
considered is found in Appendix D.  
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Category Data Type Purpose 

Geography 

DEM, Flow 
Accumulation/Direction 

Terrain analysis for hydrologic 
studies 

Slope, TWI Surface inclination and wetness 
evaluation 

Geology Quaternary Units, Bedrock, 
Permeability 

Geological composition and water 
transmission analysis 

Groundwater Hydraulic Head, Chemistry Groundwater pressure and quality 
assessment 

Groundwater & 
Surface Water Water Use Data Monitoring of water usage 

Landcover Ecosite Classification, Fire 
Polygons 

Ecosystem classification and 
post-fire land assessment 

River & Lake 
Surveys 

Water Quality, Isotope 
Sampling, Hydrometric 
Monitoring 

Water source study and flow 
measurement 

Wetlands 
Wetland Monitoring Wetland water quality monitoring 

Inventory of OSM Area Wetland mapping and study 

 

5.2 Data Acquired 

This dataset (Table 4) is made up of various types of acquired geographical, geological, 
groundwater, landcover, and wetland information pertinent to the boreal region’s aquatic 
GDEs. This multi-variable dataset, acquired from multiple organizations, ranges from point and 
line data to more complex rasters and polygons. Geography parameters were available for the 
analysis area, and are also available for the broader oil sands region. Geology data is mostly 
available throughout Alberta, however, more detailed information was available for some parts 
of the analysis area, and availability at the scale of the oil sands region is patchy. There is a 
concentration of groundwater data available in the oil sands region, when compared to other 
areas of boreal Alberta, due to energy sector monitoring and targeted work by the AGS and 
others. Landcover data like soils and ecological classification is in general more detailed in 
Southern Alberta, when compared to that available in the oil sands region. There is relatively 
good coverage of river and lake survey data in the oil sands region.   

Table 4. Summary of the data compiled to support the GDE mapping approach.  
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Category Data Name Description Data 
source 

Date of 
collection/ 
publishin
g 

Type of 
data 

Geography 

Annual Unit 
Runoff 

Measures the annual 
amount of runoff in a 
 unit area. 

GOC 2013 Point, 
Line 

Digital Elevation 
Model (DEM) - 
Advanced Land 
Observing 
Satellite (ALOS) 

3D representation of a 
terrain's surface created 
from satellite data. 

JAXA 2015 Raster 

Flow 
Accumulation - 
ALOS Derived 

Indicates the 
accumulation of water 
flow across a surface. 

JAXA 2015 Raster 

Flow Direction - 
ALOS Derived 

Shows the direction of 
water flow derived from 
elevation data. 

JAXA 2015 Raster 

HUC 8, 10 
Hydrologic Unit Codes 
that identify 
hydrological features. 

GOA 2024 Polygo
n 

Slope - ALOS 
Derived 

Measures the steepness 
or incline of a surface. JAXA 2015 Raster 

Topographic 
Wetness Index 
(TWI)- ALOS 
Derived 

Predicts the 
accumulation of water 
in a geographic area. 

JAXA 2015 Raster 

Geology 

Paleogeography, 
Evaporite 
Karstification 

Studies historical 
geology related to salt 
cavern potential. 

AER/AGS 2020 Point, 
Report 

Bedrock (Map 
600) 

Maps the distribution of 
bedrock. AGS 2013 Polygo

n 

Modeled Surfaces 
and Unit Picks of 
Quaternary Units 

Represents the 
geological composition 
of Quaternary units in 
NAOS. 

AGS 2023 Raster, 
Point 

Aquifer Hosting 
Sediments 

Sediments above 
bedrock known or 
inferred to contain 
aquifers (sand, gravel, or 
water supply wells) 

AGS 2023 Polygo
n 
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Category Data Name Description Data 
source 

Date of 
collection/ 
publishin
g 

Type of 
data 

Permeability - 
derived from 
geological 
materials 

Indicates the capacity of 
rock materials to 
transmit water. 

AGS 2013; 2022 Polygo
n 

Surficial 
geological maps 
(bedrock) 

Maps the surface 
geology. AGS 2013 Polygo

n 

Surficial 
geological maps 
(bedrock) - 
updated - Maps 
618-621 

Maps the surface 
geology in higher detail. AGS 2022 Polygo

n 

Groundwater 

Integrated 
Surface 
Water-Groundwa
ter Model for the 
Athabasca River 
Basin 

Simulates water table 
depths and 
groundwater flows. 
(Aquanty/HGS) 

OSM, 
Aquanty 2022 Raster, 

Point 

Groundwater 
Protection Data 

Provides estimated 
elevation for the base of 
the deepest formation 
that is likely to contain 
non-saline 
groundwater. 

AER 2016 Point 

Total Dissolved 
Solids 
Distribution 

Indicates the 
concentration of 
dissolved substances in 
groundwater. 

AGS 2021 Raster 

Distribution of 
Hydraulic Head in 
the Peace River / 
Viking / Bow 
Island 
Hydrostrati-graph
ic Unit 

Measures the pressure 
exerted by groundwater 
at various locations. 

AGS 2021 Raster 
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Category Data Name Description Data 
source 

Date of 
collection/ 
publishin
g 

Type of 
data 

Map 596 
(Distribution of 
Total Dissolved 
Solids in the 
Grand Rapids 
Hydrostrati-graph
ic Unit) 

Indicates the 
concentration of 
dissolved substances in 
groundwater. 

AGS 2020 Raster 

Map 597 
(Distribution of 
Hydraulic Head in 
the Grand Rapids 
Hydrostrati-graph
ic Unit) 

Measures the pressure 
exerted by groundwater 
at various locations. 

AGS 2020 Raster 

Map 612 
(Distribution of 
Total Dissolved 
Solids in the 
McMurray 
Hydrostrati-graph
ic Unit) 

Indicates the 
concentration of 
dissolved substances in 
groundwater. 

AGS 2021 Raster 

Map 613 
(Distribution of 
Hydraulic Head in 
the McMurray 
Hydrostrati-graph
ic Unit) 

Measures the pressure 
exerted by groundwater 
at various locations. 

AGS 2021 Raster 

Operators/EIAs 
GW Chemistry 

Chemical analysis of 
groundwater by 
operators or EIAs. 

Various 2021 Point 

Operators/EIAs 
Water Levels 

Water level 
measurements taken 
by operators or EIAs. 

Various 2021 Point 

Spring 
Compilation 
(AGS) 

Compiles locations and 
data of springs. AGS 2014 Point 

Spring 
Compilation 
(InnoTech) 

Compiles locations and 
data of springs. InnoTech 2022 Point 
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Category Data Name Description Data 
source 

Date of 
collection/ 
publishin
g 

Type of 
data 

Thalwegs 
Depicts the path of the 
deepest part of a 
stream or valley. 

AGS 2018 Line 

Groundwater 
and Surface 
Water 

2022 Water Use 
Data 

Data on the usage of 
water resources. AER 2022 Polygo

n 

Water Quality  Groundwater and 
surface water chemistry. OSM 2016-2022 Point 

Landcover 

Eco_AB_10TM - 4 
scales of ecosite  

Provides scales of 
ecosite classification. 

Agricul-t
ure 
Canada 

2021 Polygo
n 

Ecosystem Based 
Management 

Includes various layers 
related to land 
management and 
classification. 

ABMI 2022 Polygo
n 

Forest Fire 
Polygons 

Maps the areas affected 
by forest fires. AFP 2022 Polygo

n 

Soil Landscapes 
of Canada  

Maps the distribution 
and types of soil 
landscapes in Canada. 

Agricul-t
ure 
Canada 

2011 Polygo
n 

River and 
Lake Surveys 

Isotope Sampling 
Collects data on 
isotopes for water 
sources studies. 

ISO-ABM
I; 
InnoTech 

2009-2018 Point 

RAMP 
Hydrometric 
Monitoring 
Locations 

Locations where water 
level and flow are 
monitored. 

RAMP 2017 Point 

RAMP Water 
Quality 
Monitoring 
Locations 

Surveys to measure and 
track long-term water 
quality. 

RAMP 2017 Point 

River Surveys 

Electromagnetic 
Terrain 
Conductivity 
Mapping 

Delineates zones of 
groundwater pore fluid 
in river bottom 
sediments with 
elevated salinity. 

Advisian, 
InnoTech, 
OSM 

2014, 2015 Raster, 
Point 
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Category Data Name Description Data 
source 

Date of 
collection/ 
publishin
g 

Type of 
data 

Water 
quality/LTRN 

Surveys to measure and 
track long-term water 
quality. 

AEP 2023 Point 

WSC/RAMP 
Stream Gauging 

Measures the volume of 
water flowing through 
rivers. 

WSC 2023 Point 

Wetland 
Surveys 
 

Wetland 
Monitoring 
Surface Water 
Quality 

Monitors the quality of 
surface water in 
wetlands. 

OSM 2022 Point, 
Table 

OSM Wetland 
Inventory Pilot 
Area 

Inventory area for pilot 
studies on wetlands 
using OSM data. 

ABMI/ 
DUC 2022 Raster 

5.3 Data Gaps 

There were multiple data sources that would have been useful in the GDE approach that was 
applied in the area of interest, or which could have supported other approaches. Some key 
gaps include the McKay River Integrated Surface Water-Groundwater Model, hydraulic head 
maps, and higher resolution thermal data; all of which are continuing to be pursued (Table 5). 
InnoTech Alberta will continue to work to gain access to the output from the McKay River 
model, improved hydraulic head maps for quaternary aquifers may be available from AGS in 
2024/25 for a portion of the oil sands region, and thermal imagery access opportunities from 
additional sources will be further explored. InnoTech Alberta is discussing opportunities to 
access data collected by the Fort McKay Métis Nation to support future GDE mapping 
initiatives; focus of discussions includes clarity on data protection and management, data use 
limitations, and requirements to support community interests in sharing back outcomes.  

Table 5. Ongoing gaps in data availability that could potentially contribute to enhanced GDE 
mapping.  

Data Type Description 

Biological data Biomass, species, diversity, population, and productivity 

Climate data Information on climate patterns 
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McKay River Integrated 
Surface Water -Groundwater 
Model  

GIS model outputs, including groundwater levels and 
surface water - groundwater interactions, are needed from 
EarthFX 

Higher resolution thermal data Airborne or satellite derived thermal data at a higher 
resolution than what is available through GEE 

Hydraulic head maps Hydraulic head data may be available from AGS, 
particularly for the quaternary units, at a later date 

LTRN Data is outside of our AOI Only two points near the AOI, data would need to be 
acquired. 

Surficial and near-surface karst 
mapping 

Not much info available in the OSR for surficial or 
subterranean karst feature mapping 

Springs Additional locations of springs 

Temporal resolution data Lack of time series data 

 

6. Literature Review: Methods for Mapping 
GDEs 
Global approaches to GDE mapping have been limited to date, however, with the rise in 
population and economic growth, strain on water resources may drive an increased need for 
national or multinational approaches. The mapping of GDEs has been identified as important 
to support both ecosystem protection and human health. Saccò et al. (2024)  found that ~75 
percent of the global land surface has an interaction with groundwater resources when high 
mountain and desert terrain are excluded. Additionally, the authors draw attention to the 
transboundary nature of groundwater and the impact of declines on surrounding biodiversity 
and human water needs (Saccò et al., 2024). As demands on groundwater resources via 
human abstraction intensifies, the need for reliable GDE mapping will increase to enable use 
of these systems as critical proxies of aquifer health. Link et al., (2023) globally grid-mapped key 
GDE potentials, with indicators related to GDEs based on type (streams, wetland, vegetation) 
and further refined using 16 GDE indexes. These were coupled with stressors to groundwater 
and used to highlight regions where GDEs are predicted to be at a higher risk of impact. 
Although globally mapped northern hemisphere regions show lower risk scores in remote 
areas, regions with higher human footprint reflect higher GDE impact risk, showing the need 
to better map GDEs in less disturbed areas that have potential of being impacted by 
groundwater withdrawals as they are developed (Link et al., 2023). Global-scale mapping is 
primarily limited to low resolution approaches to date, for instance these authors used a spatial 
resolution of 0.5°. For local and regional-scale monitoring, higher resolution outputs are 
required.  
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Building foundational knowledge around the occurrence and locations of different types of 
GDEs within the OSR that can support groundwater monitoring efforts and stressor-response 
pathways, requires accurate and spatially comprehensive regional-level mapping. The 
methods used to map GDEs vary according to the category of GDE being mapped (i.e., 
terrestrial, aquatic, or subterranean). Existing efforts have largely focused on terrestrial and 
aquatic GDEs and can rely on indicators visible or measurable at the surface (e.g., water 
chemistry, phreatophytic vegetation). Subterranean GDEs, however, require an alternate 
approach that focuses on less easily observable subsurface factors including geology, lithology, 
and structure. As is the case for previous sections, the following focuses on data and 
approaches used for mapping aquatic GDE systems.  

Aquatic GDE identification can come from a variety of indicators. For instance, the review of 
surface water expressions (e.g., springs, seeps, wetlands, riverine systems) for signs of links with 
groundwater discharge, or data on surface water temperatures and chemistry, are used to 
infer GDE occurrence. Using these data to understand the hydrogeological foundation of an 
area is a common approach to GDE mapping (Martínez-Santos et al., 2021; Saccò et al., 2024), 
and can also be complemented by the use of biological indicators, such as through 
comparisons with ecological responses (e.g., wildlife or vegetation communities linked with a 
reliance on water table levels (Doody et al., 2017; Link et al., 2023). Often such data are collected 
directly on the ground and are only available for a limited number of discrete locations across 
an area due to the high costs of acquisition. For this reason, the use of remote sensing datasets 
and geospatial technology have become important tools for broader-scale, spatially explicit 
GDE mapping as they can offer comprehensive, larger-scale, repeating views of the Earth’s 
surface at a fraction of the cost of ground-based data collection. 

6.1 Remote Sensing-Based GDE Mapping 

Within the context of mapping GDEs, progress in their delineation and detection have 
drastically improved with advances in remote sensing technology and computational power, 
and range from simple spatial analysis methods combined with expert opinions (Doody et al., 
2017), to a greater reliance on computing power using machine learning approaches to map 
GDEs (Fildes et al., 2023; Martínez-Santos et al., 2021; Rohde et al., 2021; Rosa et al., 2023). The 
following sections first describe remotely-sensed datasets that are most commonly used for 
mapping GDEs, and then summarize three types of mapping approaches in which these 
datasets are typically used. 

6.1.1 Remote Sensing Data 

There are two main types of remotely-sensed data that are found to be particularly useful for 
mapping GDEs: spectral vegetation indices, and thermal imagery. The following sections 
introduce these two types of datasets, describe their use in various jurisdictions for mapping 
GDEs. 

Spectral Vegetation Indices 

Much of the published mapping efforts that leverage remote sensing data have focused on 
arid and semi-arid regions, where differences in vegetation vigor (e.g., greenness) are notable 
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between more hydrologically-stable, greener aquatic or terrestrial GDEs, such as wetlands or 
riparian areas, and drought-prone non-GDE systems. Under these conditions, remote sensing 
approaches are able to rely on spectral vegetation indices (SVIs) that often combine visible red 
and near infrared wavelengths, which respond to levels of vegetation health or vigor. Popular 
SVIs used for this purpose include the Normalized Difference Vegetation Index (NDVI), and the 
Normalized Difference Wetness Index (NDWI). GDEs remain more vegetatively green 
throughout the year because of their more consistent supply of water, even during dry 
seasons, and these indices leverage this phenomenon. Additional SVIs that have also been 
used for the detection of both aquatic and terrestrial GDEs are listed in Table 6. While these 
indices may leverage different spectral bands or different combinations of bands, these are 
nevertheless more often utilized for detecting GDEs within regions where the differentials 
between the source of water (surface water vs. groundwater) are distinct in nature (i.e., arid, 
semi-arid regions). In these environments, higher contrasts can be found between ecosystems 
receiving consistent hydrological sources (e.g., GDEs) and those which have high seasonal 
variation in water availability (Fildes et al., 2023; Martínez-Santos et al., 2021; Rohde et al., 2021). 
While SVIs like NDVI or NDWI are particularly useful in arid and semi-arid regions, additional 
data sources are also used in combination with these to support GDE detection and mapping. 
Such ancillary datasets with information on: geology, lithology, piezometric surfaces, elevation, 
slope, aquifer permeability, soils, and flow accumulation potential (e.g., Martinez-Santos et al., 
2021).   

Table 6. List of spectral vegetation indices used in the remote sensing-based mapping of 
GDEs. 

Spectral Index Recent Publications Using the Index 

Normalized Difference Vegetation Index (NDVI) Rohde et al. (2021); Martinez-Santos et 
al. (2021); LaRocque & Leblon (2022) 

Normalized Difference Vegetation Index (NDVI) - 
Coefficient of Variation (NDCVI NDVI)  

Fildes et al. (2023) 

Normalized Difference Vegetation Fractional Cover 
Photosynthetic Vegetation - Coefficient of 
Variation (NDCVI PV FC) 

Fildes et al. (2023) 

Difference Vegetation Index (DVI) LaRocque & Leblon (2022) 

Green Difference Vegetation Index (GDVI) LaRocque & Leblon (2022) 

Green Ratio Vegetation Index (GRVI) LaRocque & Leblon (2022) 

Normalized Green (NG) LaRocque & Leblon (2022) 

Normalized Near Infrared (NNIR) LaRocque & Leblon (2022) 

Normalized Red (NR) LaRocque & Leblon (2022) 
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Red Simple-Ratio Vegetation Index (RVI) LaRocque & Leblon (2022) 

Enhanced Vegetation index (EVI) Rohde et al. (2021) 

Normalized Difference Aquatic Vegetation Index 
(NDAVI) LaRocque & Leblon (2022) 

Normalized Difference Moisture Index (NDMI) Rohde et al. (2021) 

Normalized Difference Water Index (NDWI) Rohde et al. (2021) 

Normalized Burn Ratio (NBR) Rohde et al. (2021) 

Normalized Difference Evapotranspiration (NDET)  Fildes et al. (2023) 

Near Infrared reflectance of Vegetation (NiRv) Rohde et al. (2021) 

Soil Adjusted Vegetation Index (SAVI) Rohde et al. (2021) 

Water Adjusted Vegetation Index (WAVI) LaRocque & Leblon (2022) 

Tasseled Cap (TCAP) derivatives: Brightness, 
Greenness, Wetness, Angle Rohde et al. (2021) 

 

Thermal Imagery 

Groundwater-surface water interactions often involve distinct water temperature differences 
between the two water sources. While groundwater retains a steady temperature throughout 
the year as it is insulated from surface seasonal and daily atmospheric temperature changes, 
the temperatures of surface water vary with the seasons and local weather conditions (e.g., 
amount of incoming solar radiation, levels of precipitation, etc.). Thus, depending on the time 
of year, groundwater can be much cooler than surface water or vice versa. Variations in water 
temperature can be used as an indicator of groundwater presence, and have even been 
leveraged for empirically quantifying groundwater-surface water interactions and fluxes 
(Anibas et al., 2011; Kløve et al., 2011). Examining spatial variations in water temperatures lends 
itself well to remote sensing approaches - levels of thermal infrared energy is commonly 
captured using a variety of space-based, airborne, drone-based, or handheld sensors and 
cameras. 

Ala-aho et al. (2015)used airborne thermal images captured from a helicopter over an 
unconfined aquifer study area in central Finland, to manually identify temperature gradients 
along a lake shoreline. From these they identified locations of groundwater inflow into the lake, 
which were used to validate a fully integrated hydrological model of water fluxes in the area. 
Isokangas et al. (2017)similarly use helicopter-based thermal imagery and temperature 
thresholds to delineate locations of groundwater seepage in a Finnish peatland. They 
compared this with the outputs of an isotope mass balance mapping approach and showed 
success in mapping groundwater contributions to peatland pore water in the area. Both Autio 
et al. (2023) and Watts et al. (2023) leverage newer drone technology to capture local and 
highly detailed thermal image mosaics of wetlands in northern Finland and Massachusetts, 
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U.S.A, respectively. The former show that temperature anomalies identified through manual 
and threshold-based delineation from thermal imagery can align well with the stable water 
isotope-based identification of groundwater seeps, and with a physically-based flow model of 
the area (Autio et al., 2023). The latter used thermal imagery for more than model validation, 
however, mapping groundwater seeps with drone-based thermal imagery both pre- and 
post-restoration to show the successful removal of barriers to surface expression at the site 
(Watts et al., 2023).  

Using thermal imagery to identify groundwater-surface water interactions and therefore the 
GDEs that accompany them shows great potential in the literature. However, as is the case for 
other approaches, it does not come without its limitations and challenges. For instance, the 
time of year and time of day at which the thermal imagery is captured are both important for 
ensuring maximum temperature differences between different water sources to enhance 
attribution ability. That is, times of year and day when surface water is at its coldest or hottest in 
comparison to more stable groundwater (e.g., mid-winter or late summer; evening, early 
morning) should be selected so as to maximize groundwater detection. Thermal imagery also 
requires significant amounts of calibration and processing post-acquisition if actual water or 
surface temperatures are being extracted and, even with careful post-processing, variabilities 
across images can come from weather conditions, camera angles, within-waterbody 
temperature stratification, differing vegetation thermal properties, etc. (Autio et al., 2023; 
Isokangas et al., 2017; Watts et al., 2023) .     

Remote Sensing Mapping Approaches 

Approaches leveraging remote sensing for the mapping of GDEs are divided into three main 
types of methods: integrated hydrological modeling, suitability /risk mapping, and machine 
learning approaches. Each of these is described in more detail in the sections below, with 
approaches used in the boreal identified.  

Integrated Hydrological Modelling Approaches 

The combination of fully-integrated hydrological models, isotopes, and thermal mapping has 
shown promise for determining GDEs over a relatively small catchment (approximately 100 
km2) in peatland environments, but lacks the spatial capacities of larger regional studies due to 
cost (Ala-aho et al., 2015; Autio et al., 2023; Eskelinen et al., 2015). Despite these advances, 
mapping GDEs within peatland regions is still hindered by the low variability in vegetation 
vigor, and therefore spectral vegetation properties as seen in arid or semi-arid areas, due to the 
relative hydrological stability in more humid peatlands. Furthermore, despite the availability of 
open access satellite-based thermal imagery for larger-scale mapping, the lower resolution of 
these data (i.e., ≥ 60 m pixel sizes) makes the detection of smaller GDEs more difficult and the 
delineation of larger GDEs less exact. Most studies which have utilized thermal imagery as a 
mapping approach in peatlands are typically small in nature and leverage high resolution 
drone thermal infrared imagery to detect groundwater seeps on the landscape (Isokangas et 
al., 2017; Watts et al., 2023). This approach would not currently be feasible for larger-scale 
applications (e.g., across the OSR).  
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Suitability Mapping Approaches 

Suitability maps have been used to identify terrestrial and aquatic GDEs in both arid and 
boreal settings (Doody et al., 2017; Eskelinen et al., 2015; Kuginis et al., 2016), and typically rely on 
three major remote sensing data groups: vegetation community mapping and associated 
data (e.g. NDVI, NDWI), groundwater levels, and layers pertaining to aquifer types and soil 
parameters (Eskelinen et al., 2015; Doody et al., 2017). These approaches rely on a workflow that 
uses user-defined scores and decision rules to normalize variables. Users then assign weight 
relative to each variable, which calculates the likelihood that any given location within an area 
of interest is a. These methods are susceptible to bias from experts in assigning weights, and 
do have limitations with regards to only having confirmed (positive) points, which can 
influence computational power in regions with sparse data availability (Doody et al., 2017; Fildes 
et al., 2023; Malczewski, 2004).     

Within the context of a national approach for mapping GDEs in Australia’s arid environments, 
Doody et al., (2017) follow a workflow incorporating 7 methodologies:  

● a literature review involved assessing 200 reports from Eco-Hydrological Zones (EHZ) 
and expert consultation; 

● collation of continental spatial data with the division into 57 eco-hydrogeological zones 
fundamentally based on climate, geology, and groundwater flow systems; 

● the development of rules on groundwater dependency, based on both literature and 
expert consultation to determine the criteria required for GDE systems; 

● collation of vegetation and hydrological spatial data (e.g., locations of wetland, river, 
springs), in conjunction with remote sensing derived products (MODIS satellite imagery 
at a 250 m resolution, to make inflow dependent ecosystem products); 

● an assessment of where spatial layers intersect with locations classified as potential 
GDEs (e.g., surficial geology and vegetation features); 

● the normalization and weighting of developed rules, based on expert opinions; and 

● calculation of GDE potential across the area of interest, based on expert-derived rules 
multiplied by the weightings, and divided by the sum of total weightings. 

The validation of GDEs within this Australian study required the utilization of “known GDE” 
locations garnered from previous literature, with the assumption that they were highly 
accurate in nature, and also depended heavily on expert opinions (Doody et al. 2017). Some of 
the limitations of using this method were the broadness of the study, resulting in lower spatial 
detail in the detection of GDEs, and challenges with knowledge gaps, where mapping layers 
did not overlap within all regions. Expert opinion was heavily relied upon in both the validation 
approaches and in initial data sourcing (Doody et al., 2017). The heavy reliance on vegetation 
data to corroborate GDE presence, in conjunction with large dependence on expert opinion, 
makes it more difficult to apply this methodology within the boreal region.   

The use of GDE likelihood mapping within boreal peatland in Finland by Eskelinen et al., (2015) 
shows some promise for use within the boreal, despite the small scale of the study. Mapping a 
relatively small catchment area of approximately 7 km2, Eskelinen et al. (2015), used a 
methodology that relied more heavily on hydrological inputs and models (Darcy’s Law for flow, 
and Hydrogeosphere (HGS) for model validation), and leveraged the following inputs:  

38 



● Slope, utilizing Darcy’s Law, whereby hydrological flux is dependent on discharge area 
and hydrological gradient (Freeze & Cherry, 1979)), with verification from a previous 
study in the region verifying that groundwater level within an esker peatland system 
followed the topographic plane (Rossi et al., 2012). 

● Natural spring systems were used as a metric for areas which might have 
discontinuous geological structures allowing for groundwater seeps to be assigned a 
higher potential of being a GDE; this was done in a stepwise function (100 m) to a total 
of 1 km distance. Inversely, the probability of discharge was reduced at 500 m intervals 
until 3 km from the boundary of the recharge area. 

● Peat thickness, as a function of interpolations between measurements with likelihood 
determined at slope, divided by the inverse peat thickness layer. 

Validation of the models were conducted using two methods: (1) field assessments of known 
GDE points with existing base flow measurements and 15-cm LiDAR digital elevation model 
delineations over two years; and (2) the use of HydroGeoSphere groundwater modeling 
software based on Ala-Aho et al. (2015), which describes a fully integrated groundwater model 
(Eskelinen et al., 2015). Of the two models generated, the model using basic inputs (i.e., slope 
and springs) had good predictive abilities and resolution, while including the third input (i.e., 
peat thickness) increased GDE detection resolution in areas with data, but lowered resolutions 
in regions lacking accurate data and increased computational demands (Eskelinen et al., 2015). 
The use of likelihood maps for mapping of GDEs with the boreal has potential. However, the 
reliance on detailed spatial data, and hydrological modelling inputs (detection (Darcy’s law) 
and validation (HGS)) might limit the accuracy of GDE predictions in areas that lack substantial 
data coverage and high-quality data layers.   

Machine Learning Approaches 

There have been marked improvements in the use of machine learning approaches 
combining multiple data sources to detect GDEs, which enable the processing of large 
amounts of remote sensing and other geospatial data (Rampheri et al., 2023). Recent studies 
focused on leveraging the use of machine learning in the mapping of GDEs in both arid and 
boreal environments. Within these studies, model variability ranged >20 with the most 
common machine learning algorithms being random forest, support vector machine, artificial 
neural network, naive Bayes classification, and maximum entropy modeling. This section will 
review three papers in depth. Of the three studies reviewed, most implemented tools and 
packages for common geospatial rendering software including QGIS - MLMapper 2.0 
(Martínez-Santos et al., 2021), Google Earth Engine - Shallow Groundwater Estimation Tool 
(SAGE) (Rohde et al. 2021), and  Maxent software 
(https://biodiversityinformatics.amnh.org/open_source/maxent/, Gerlach et al., 2022.  The 
following paragraphs describe some of these methods in more detail.  

Within the context of arid and semi-arid environments, Martínez -Santos et al. (2021) developed 
and employed the ML Mapper tool - a multi-layered supervised classification approach that 
leveraged several data layers to map GDEs within a 6100 km2 groundwater aquifer system in 
Spain, similar to the size of our Study Area. Their approach utilized the following explanatory 
inputs in the MLMapper software: a digital elevation model (DEM), a piezometric surface, 
topographic wetness index, slope, NDVI, flow accumulation, geology, aquifer permeability, and 
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soil type. These were each broken into 4-5 subclassifications typically ranging from very low to 
very high potential for GDEs, with quantifiable metrics such as slope, groundwater table, NDVI 
classed into numerical bins. The approach then trains, tunes, and cross-validates a multitude of 
machine learning algorithms simultaneously. These include: support vector machines (SVM), 
linear vector machines (LVM), logistic regression (LRG), decision tree classifier (CRT), random 
forest classifier (RFC), K-nearest neighbor classification (KNN), linear discriminant analysis 
(LDA), gaussian naïve Bayes classification (NBA), multilayer perceptron neural network (MLP), 
ada-boost classifier (ABC), quadratic discriminant analysis (QDA), gradient boosting 
classification (GBC), gaussian process (GPC), ridge (RID), stochastic gradient descent linear 
classifier (SGD), perceptron (PRC), nearest centroid classifier (NCC), multinomial naive Bayes 
(MNB), complement naive Bayes (CNB), and extra-trees classifier (EXT). This allows for both 
low-suitability models and collinearity between variables to be excluded, and for the effective 
leveraging of multiple spatial input layers in one pass.  

Model tuning and validation includes automated parameter tuning using 10-fold 
cross-validation, and the removal of counterproductive and redundant variables. The authors 
used a 50/50 training vs. test data split in this study (Martínez -Santos et al., 2021), with 150 total 
reference data points split into 75 known points over the 6 major wetlands, and the remaining 
75 points spread over non-GDE points across the aquifer. The MLMapper plugin allows the user 
to extrapolate the results to produce a predictive map. Martinez-Santos et al. (2021) found that 
tree-based classifiers (e.g., RFC, EXT), in addition to LRG, SVM, and KNN all performed well in 
their ability to map GDEs in their study area. The highest model confidences were produced by 
the tree-based classifiers and the use of only 4 explanatory variables: DEM, lithology, 
permeability, and water table elevation. This method, MLMappper, has the potential to be 
useful for mapping GDEs in the boreal as there is less dependence on vegetation derived 
indices, and more of a focus on hydrological and hydrogeological factors (wetlands, lakes, 
stream, water table, lithology, permeability). This makes it an ideal choice when combined with 
its high computational capability to leverage multiple geospatial input layers at once.  

Google Earth Engine (GEE) and machine learning have been used to map terrestrial and 
aquatic GDEs in California, alongside risks associated with groundwater level changes. Rohde 
et al. (2021) leveraged random forest modeling to assess risk for GDEs in groundwater level 
changes. The methodology used a number of inputs, divided into two types of variables: 
dynamic or categorical. Dynamic variables included: groundwater elevations from shallow 
wells over multiple years (roughly 55.6K sample points total), and GDE maps based on 
vegetation indices derived from Landsat data. The indices used were: NDVI, NDMI, NDWI, 
Normalized Burn Ratio NBR, NiRv, SAVI, EVI, and TCAP indices (see Table 6). GDE mapping also 
employed a downscaled climate surface (NASA’s Daymet; https://daymet.ornl.gov/) for 
predictions of climate. Both the Landsat and climate data were fed into a temporal 
segmentation, which distributes the data into time series segments feeding into the model. 
Categorical variables used by Rohde et al., (2021) included: watershed boundaries at a HUC 8 
level, hydrological region, ecoregion, and vegetation typing. Both categorical and dynamic 
variables are fed into a random forest machine learning model to detect risks of groundwater 
level changes on local GDEs (2021).  

The results of the study leveraged large data sources to map GDEs to demonstrate how 
machine learning can inform risks to GDE once they are successfully mapped. Although this 
approach is ultimately assessing GDE risk to groundwater fluctuations and not directly 
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mapping them, a similar method has been incorporated into a study mapping GDEs across 
the globe with a random forest approach. The latter is set to be published in the spring of 2024 
(M. M. Rohdes, personal communication, January 23, 2024). This new approach has not been 
used to map boreal Alberta but has mapped approximately 61,600 km² of southern Alberta 
prairie pothole region (Nature Conservancy & Desert Research Institute, 2023), which 
exemplifies the power of GEE and machine learning for scaling up GDE mapping efforts. This 
approach could be suitable for the boreal region in the future, depending on data availability.  

Mapping of GDEs across landscapes, like all predictive modeling, requires validation, preferably 
using independent data or methods. These data can range from known GDEs points from 
previously studied areas ranging from known seeps such as springs, wetlands, reaches of river, 
and lakes system to informative point source data like stable isotopes and geochemistry 
(Doody et al., 2017; Eskelinen et al., 2015; Fildes et al., 2023; Gerlach et al., 2022; Isokangas et al., 
2017; Klausmeyer et al., 2018; Lidberg et al., 2020; Martínez-Santos et al., 2021; Rohde et al., 2021). 
These known points within a machine learning approach serve as an important source of 
training data for the models and highlight the need for both positive (known GDEs) and 
negative (non-GDE) points for both training and model verification (Lidberg et al., 2019; 
Martínez-Santos et al., 2021; Rohde et al., 2021; Fildes et al., 2023). There is also the potential for 
Indigenous communities to support identification of known GDEs such as seeps, salt licks, and 
other prominent groundwater features to assist in mapping efforts to be used as additional 
training or validation data, with limitations on data use and protection that reflect community 
requirements.       

6.2 Approaches in Boreal Environments 

Much of the effort using remote sensing to map GDEs has focused in arid and semi-arid 
environments, like Australia or drier portions of the U.S.A., where differences in vegetation vigor 
are noticeable between GDE and non-GDE environments because the former maintain some 
level of green vegetation given their more stable access to groundwater. SVIs are particularly 
useful for mapping these systems. Unlike arid or semi-arid regions, however, more humid 
boreal regions at higher latitudes must rely on alternative approaches that often leverage local 
biotic or abiotic context. With high-latitude climates like the boreal forest, reliance on methods 
that are dominated by NDVI and dependencies on phreatophytes (deep rooting plants) are far 
less efficient, posing a challenge as water availability (surface and groundwater) is sufficiently 
high so as not to cause high amounts of water stress outside GDE systems, thereby making 
negligible contrast in vegetation vigor between GDE and non-GDE systems. The mapping and 
detection of GDEs in high-latitude boreal areas has begun to grow as concerns around water 
security and anthropogenic impacts on these systems increase (Kløve et al., 2011). Some of this 
work has centered around the use of thermal imaging from helicopters and drones, in 
conjunction with stable isotopes (2H, 18O), as tools for accurately identifying where GDEs are 
present (Isokangas et al., 2017). While these approaches have shown good performance in 
Finnish examples (Ala-Aho et al., 2015; Autio et al., 2023), they are limited in their spatial extent 
as they rely not only on ground-based isotope sampling, but their helicopter- and drone-based 
approaches cannot be scaled easily to a large area. As an alternative approach, machine 
learning has played an important role in mapping GDEs in other jurisdictions.   
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Lidberg et al. (2019) implemented machine learning to map the wet areas of a boreal forest 
landscape in Sweden (an area of 450,295 km2). An important challenge of mapping these 
ecosystems in this area is that the region is dominated by peatlands and dense forests, where 
visible differences between GDEs and non-GDE areas are less distinct. Model inputs included 
average soil moisture regimes according to the Swedish national forest inventory, using the 
following categories: dry, mesic, mesic-moist, moist, and wet. As peatlands such as fens 
typically have high water table heights close to the surface, soil moisture information can be 
useful for predicting areas which would have higher potential to be GDEs. The model also used 
inputs from a national digital elevation model (DEM) at 2 m resolution, local topography, and 
flow grids based on deterministic-8 (D8) for hydrological conditioning. Streams, lakes and 
rivers were then rasterized to create a source layer for surface water. Elevation above stream, 
depth to water table, and topographic wetness were then also calculated. Additional inputs 
included: quaternary deposits parsed into five categories (till soils, peat soils, coarse sediments, 
fine sediments, rock outcroppings); open wetlands, which were used to aid in peat 
delineations; and climate variables that capture runoff seasonality. Out of the four common 
machine learning algorithms used (artificial neural networks, random forest, support vector 
machines, and naive bayes classification) the random forest and artificial neural networks were 
able to account for 84% of the wet and dry areas correctly with a relatively high Kappa 
coefficient, which accounts for random chance in its measure of accuracy (0.65; Lidberg et al., 
2019). Although this method does not directly map GDEs themselves, it would identify larger 
areas that can be further delineated into GDE specific regions within the boreal (i.e., areas with 
high potential to contain GDEs), and demonstrates an approach that could be effective for 
supporting GDE mapping in Alberta’s boreal region.   

In the higher latitude regions of Alaska, Gerlach et al.,(2022) used machine learning to locate 
areas where groundwater discharged into salmon-bearing streams. This approach compiled 
existing data and literature, identified well logs (>800 points), which covered 40% of the study 
area, and compiled high resolution lidar (1x1 m resampled to 3x3 m) for the entire study area 
(1655 km2). The authors then subset those areas where geological data existed, to determine 
groundwater discharge and locations. The use of field-based observations also highlighted 
that groundwater features could be identified via a combination of topographic variables 
(narrow gullies, abrupt starts of deep incised stream channels along topographic contours 
intervals on hill slopes). All data was processed using ESRI ArcPro. DEM-derived inputs 
included: Terrain Ruggedness Index (TRI), Topographic Wetness Index (TWI), Flow-Weighted 
Slope (FWS), and flow lines. The machine learning algorithm used only topographic data to 
predict groundwater likelihood, using maximum entropy modeling to determine this 
likelihood. The Maxent modeling tool 
(http://biodiversityinformatics.amnh.org/open_source/maxent) was leveraged for this, and relies 
on presence-only data (point, and layer form) to infer maximum likelihood by minimizing the 
relative entropy between the predicted density and input points, based on the probability 
densities of data inputs. Data was split into a 70/30 division with 51 locations (n=36 used as 
training data, and n=15 for test data). Verification was initially done via ground-truthed points, 
with the overall accuracy of the models having a high ability to predict groundwater discharge 
likelihoods (AUC scores = 0.95 training data, and 0.91 test data; Gerlach et al., 2022). The method 
was able to predict the location of seeps and groundwater discharge into streams and rivers by 
leveraging geological and topographic inputs. Although this study’s region has greater 
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topographic relief than is found in Alberta’s boreal region, this method could be useful in 
determining GDEs along flowing stream and river systems. If applied within an Alberta 
context, however, the approach is likely to be limited in its usefulness, given the lower 
topographic relief found in these areas.  

A recent use of machine learning within the Fort McKay watershed of northeastern Alberta 
illustrates the only such example within the OSR. It was a two part study conducted by 
Larocque and Leblon (2022), and comprised the use of  remote sensing for mapping landcover 
and wetlands (some of which are GDEs), followed by water level mapping within the same 
study area . The landcover mapping approach by LaRocque and Leblon (2022) targeted a study 
area of approximately 5,600 km2, and leveraged three types of remote sensing data over 
multiple season (spring, summer, and fall): Landsat optical (https://glovis.usgs.gov), SAR 
(Copernicus Sentinel-1), and LiDAR imagery (Alberta Geospatial Centre 2009-2013). Landsat-8 
imagery was used to calculate a range of 11 spectral vegetation indices (see Table 6), while 
LiDAR data at 15 m resolution was used to extract a digital terrain model (DTM) as well as 
additional slope (%), and slope curvature input layers. These inputs were combined in a 
random forest non-parametric supervised classification, applied using R statistical software 
and the Random Forest code package (Breiman, 2001, 2003). Data was split into 810 training 
areas, spread over 21 classes (e.g., forest types, fen and bog types, burned areas, etc.). The 
method produced an overall accuracy of 94% and a Kappa coefficient of 93.29%. The two 
variables with greatest model importance based on mean accuracy were: the DTM and slope, 
which, when removed, decreased classification accuracies by 93.29% and 41.86%, respectively 
(LaRocque and Lablon, 2022).  

The second phase of this work focused specifically on water level mapping using Sentinel-1 
SAR data to derive high and low open water levels in mapped wetlands areas. Although this 
study showed high classification accuracies with machine learning, the categorical map 
output does not quantify how likely a mapped wetland system in the resulting map is a GDE. 
Several of the wetland classes (e.g., types of fens) are defined within the Alberta Wetland 
Classification System (AWCS) as relying on groundwater inputs; the output itself is not 
specifically mapping GDEs. Nevertheless, the study does highlight the importance of 
topographical variables in predicting GDEs, with the DTM and slope inputs accounting for the 
highest accuracy in predictions, while spectral measures of vegetation vigor were less useful. 
As the boreal is not a water-limited environment like arid or semi-arid areas, the use of 
vegetation indices such as NDVI is less important, while topographical, geological and 
hydrogeological inputs are more important. The high number of classes delineated in this 
study also might introduce overfitting, as can happen when distinguishing a high number of 
classes with machine learning algorithms.  These categories also do not directly equate the 
definite presence or absence of a GDE.         

6.3 Recommendations for Mapping GDEs in the OSR 

Of the three types of remote sensing-based GDE mapping efforts reviewed here, machine 
learning is likely to be the most practical approach to mapping GDEs within the OSR. It is 
capable of leveraging multiple data sources of differing data types to achieve high predictive 
accuracy where data limitations exist and is scalable to large spatial areas. The integrated 
hydrological modeling approach, while successful, is not a feasible approach on its own for 
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larger-scale applications across the OSR. It relies on ground-based water samples that are 
costly and time-consuming to collect, as well as detailed thermal imagery from airplane, 
helicopter, or drone platforms, which is neither easily scalable nor easy to repeat for future 
updating. While thermal imagery is acquired regularly at large scales through various 
satellite-based sensors, the spatial resolution of these (e.g., 100 m for Landsat-8 or -9) is too 
coarse to capture anything but the largest of GDEs. The risk mapping approach, also known as 
suitability modeling, can be used for mapping of GDEs, however can have limitations with 
leveraging multiple data sources,  association of weighting of explanatory variables, and is 
typically adapted to a presence only mapping (Malczewski, 2004). These methods are also 
heavily dependent on expert opinion and can be biased (Doody et al., 2017; Fildes et al. 2023).  

Of the machine learning approaches described here, the multilayer supervised classification 
approach used by the MLMapper tool (Martínez-Santos et al., 2021) shows the most promise for 
mapping GDEs within the OSR. The tool is able to incorporate a wide range of geospatial data 
layers simultaneously, including a mixture of numeric and categorical variables, and could 
include many of the same physical geological inputs in the OSR as those used within the 
paper. It would also enable the addition of other high-resolution layers from recent Alberta 
Geological Society products, which are available within the OSR and could offer improved 
spatial resolution in a GDE inventory. Furthermore, the MLMapper approach implements 
twenty machine learning model algorithms simultaneously and can create an ensemble 
product that leverages those offering the highest accuracy (Martínez-Santos et al., 2021), to 
successfully map GDEs in a multitude of environments, including the boreal. While other 
platforms such as GEE, Maxent, or R statistical software are regularly used to implement 
multiple machine learning algorithms, is it unknown whether any exist that provide the same 
degree of ease-of-use for applying multiple machine learning algorithms for modeling the 
presence/absence of a phenomenon, as well as integrating a range of input layers within one 
program.    

Although suitability or risk-based mapping approaches could also be implemented they were 
not preferred due to their inherent limitations (demand for expert opinion, bias in assigning 
weighting of variables, standardization of criterion maps, and limited computational power for 
regions that do not possess data coverage), leading to stochastic mapping probabilities, and 
lack the ability to leverage all available data sources (Malczewski 2004). Machine learning was 
selected as the method that would allow for the maximum amount of data to be leveraged, 
limiting or avoiding many of the limitations present in suitability or risk-based mapping. 
Specifically, the use of multiple models to derive a binary and probability GDE map of the OSR 
study area, specifically the MLMapper platform as it can leverage up to 20 algorithms to 
calculate the best fitted models (Martínez-Santos et al., 2021).  
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7. Methods for GDE Mapping in the Study 
Area 

7.1 Model: MLMapper 2.0 

The MLMapper 2.0 method and tool developed and described by Martínez-Santos et al. (2021) 
was used to map GDEs within the selected OSR study area (Figure 1). Updated Python code 
was provided by the authors and run within a Python development environment on a local 
desktop machine. The approach leverages point-source reference data in the form of known 
presence and absence locations of the phenomenon of interest (i.e., GDEs in this case), 
alongside explanatory variable values associated with each of these same point sources. From 
this, the tool applies up to 20 machine learning algorithms to perform supervised multilayer 
pattern recognition and produce predictive models of GDE occurrence (Martínez-Santos et al., 
2021). The best performing of these, based on a user-defined threshold, are then combined to 
produce an ensemble model output map of relative GDE likelihood. Ensembles or averaged 
models have been shown to typically perform better than single method approaches 
(Dormann et al., 2018). The overall workflow of the MLMapper tool and the steps that were 
followed here for mapping GDEs in the study area, are outlined in the diagram given in Figure 
2. The machine learning modeling approaches tested in our study area included the following 
15 methods: linear support vector machines (LSVM), logistic regression (LRG), a decision tree 
classifier (CRT), a random forest classifier (RFC), linear discriminant analysis (LDA), a K-nearest 
neighbor classifier (KNN), a gradient boosting classifier (GBC), an Ada-boost classifier (ABC), an 
extra-trees classifier (EXT), a passive aggressive classifier (PAC), quadratic discriminant analysis 
(QDA), multilayer perception neural networks (MLP), a ridge classifier (RID), a stochastic 
gradient descent linear classifier (SGD), and perceptron (PRC). Analyses and output map 
products were both produced using a 50 m pixel resolution. This provided an effective scale 
that balanced the desire for detailed mapping and the resolutions of the various input 
datasets (see the following sections for more detail on these). 
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Figure 2. Flowchart showing the main components of the workflow used to map GDEs across 
the study area, leveraging the MLMapper 2.0 tool from MartÍnez-Santos et al. (2021). 

7.2 Explanatory Variables 

The 13 explanatory input variables used in this preliminary GDE mapping work each fall into 
one of three categories: topographic, hydrogeological, and wetland. Data were reprojected to a 
common coordinate reference system (i.e., NAD 1983 CSRS UTM Zone 12N (EPSG 2956)), so as 
to ensure geolocational alignment. Martínez-Santos et al. (2021) reclassified their input variable 
datasets into integer category values before using them in the MLMapper tool. The use of 
reclassified inputs versus original, scaled inputs was tested here. For some model runs, variable 
values were binned into one of several output categories and assigned a relative integer value 
(see TablesTOPO VAR CLASSES, HYDROGEOL VAR CLASSES, and WETLAND VAR CLASSES). 
Reclassification was based on subject matter expertise and knowledge (e.g., John Gibson, 
personal communication). For other model runs wherein inputs were not reclassified, the 
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values were simply scaled before being used in the MLMapper tool, so as to remove negative 
and decimal values (TablesTOPO VAR CLASSES, HYDROGEOL VAR CLASSES, and 8).  

7.2.1 Topographic 

Information on the regional and local terrain is key to identifying likely locations for GDEs since 
terrain is a strong influencer of water movement and depth to groundwater, which is a critical 
component of groundwater presence near, or expression at, the surface. Five topographic 
input variables were used in this work:  elevation, flow accumulation, slope, terrain ruggedness 
index (TRI), and the SAGA wetness index (SWI), which is comparable to a more generic 
topographic wetness index but specific to the SAGA software. Maps of these inputs are 
provided in Figure 3. A satellite-based digital surface/elevation model from the Japan 
Aerospace Exploration Agency’s Advanced Land Observing Satellite (ALOS) (Tadono et al., 2014) 
provided the source for elevation, slope, TRI, and SWI inputs. These data are publicly available 
in a 30 m resolution for the globe, and were accessed using Google’s Earth Engine platform 
(Gorelick et al., 2017). SWI and TRI datasets derived from ALOS already existed for the study area 
within the ABMI’s geospatial data archive, and were used here, while slope was derived for this 
project from the same source. Flow accumulation data were compiled from a separate source, 
however, and originated from the MERIT Hydro global hydrography datasets 
(https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/). Table 7 describes how these 
topographic inputs were classified and scaled for inclusion in the MLMapper tool. 
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Figure 3. Maps of the five topographic explanatory input variables used in mapping GDEs 
over the study area. 
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Table 7. Table describing the scaling and reclassification of topographic input explanatory 
variable values into integer classes, for inclusion in the MLMapper tool.  

Input Variable Integer Reclassification Spatial 
Resolution Data Source 

Elevation 
 
Scaling: rounded to 
nearest integer 

1: 222 - 350 m 

30 m 

Satellite-based ALOS DEM 
(https://developers.google.
com/earth-engine/datasets
/catalog/JAXA_ALOS_AW3
D30_V3_2) 

2: 350 - 450 m 

3: 450 - 550 m 

4: 550 - 650 m 

5: 650 - 750 m 

6: 750 - 860 m 

SAGA Wetness Index 
(unitless) 
 
Scaling: multiplied by 100 

1: 1 - 5 

10 m 

Calculated from ALOS 
DEM 
(https://developers.google.
com/earth-engine/datasets
/catalog/JAXA_ALOS_AW3
D30_V3_2) 

2: 5 - 7 

3: 7 - 9 

4: 9 - 12 

Terrain Ruggedness Index 
(unitless) 
 
Scaling: multiplied by 10 
 
 

1: 0 

10 m 

Calculated from ALOS 
DEM 
(https://developers.google.
com/earth-engine/datasets
/catalog/JAXA_ALOS_AW3
D30_V3_2) 

2: >0 - 0.5 

3: 0.5 - 1 

4: 1 - 2 

5: 2 - 5 

6: 5 - 18 

Slope (degrees) 
 
Scaling: multiplied by 100 

1: 0 - 5 degrees 

 30 m 

Calculated from ALOS 
DEM 
(https://developers.google.
com/earth-engine/datasets
/catalog/JAXA_ALOS_AW3
D30_V3_2) 

2: 5 - 10 degrees 

3: 10 - 15 degrees 

4: 15 - 20 degrees 

5: 20 - 90 degrees 

Flow accumulation (cell 
units) 

1: 0-5000 

50 m 

MERIT Hydro 
(https://hydro.iis.u-tokyo.ac.
jp/~yamadai/MERIT_Hydro/
) 

2. 5000-15000 

3. 15,000-10,0000 

4. 100,000-125,000 

5. 125,000-150,000 
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7.2.2 Hydrogeologic 

Explanatory variables under a hydrogeological focus included: permeability derived from 
surficial geology, soil drainage, aquifer hosting sediment, depth to water, and bedrock. Surficial 
geology plays a crucial role in the movement of groundwater, where highly permeable 
geological features are likely to have an increased probability of groundwater upwelling and 
are thus more likely to coincide with the presence of GDEs. A surficial geology dataset from the 
Alberta Geological Survey (AGS) maps 601, 618-621 was converted into a permeability scale 
through classification into five permeability classes, based on expert opinion from AGS. In 
these classes a 0 (zero) signified low permeability, while five was considered to represent high 
permeability (Figure 4; Table 8). 

Soil drainage influences the hydrological recharge of GDEs and the likelihood that an area is 
prone to water table fluctuations. These data were obtained from Soil Landscapes of Canada 
V3.2 which includes a max depth of 1-2 m below the surface. Soil types were classified into five 
categories normalized along a range from 1 = well drained to 5 = very poorly drained (Figure 4; 
Table 8).  

Aquifer hosting sediment indicates regions that are likely to have large aquifer systems and 
thereby be more permeable, and more likely to contain GDEs. These data were obtained from 
AGS map 632 and classified into 4 categories, wherein: 0 = no values, 1 = known plains upland, 2 
= potential plains upland, 3 = inferred buried valley, and 4 = known buried valleys (Figure 4; 
Table 8). 

Depth to water was derived from the Aquanty HGS model of the Athabasca River Basin at a 
500 m resolution.  Areas closer to high water tables are more likely to be GDEs as there is both 
a greater potential for a groundwater seep or spring to occur, and for the water table to be in 
closer proximity to the rooting zone of local vegetation. The data were scaled by 100 and then 
normalized along a 1-5 scale with a range of 1 indicating near surface (e.g., 0 to 0.1 m), and 5 
indicating greater depths (e.g., 2 to 5 m) to groundwater (Figure 4; Table 8). 

Bedrock formation data was pulled from the AGS 600 map and categorized into 12 unique 
classes. Bedrock formations influence regional groundwater flow and have potential to infer 
channeling of deep basin groundwater based on the unique hydrogeochemical and 
hydrogeological features of each formation. These were therefore included to assess to what 
extent GDEs presence is derived from bedrock formation (Figure 4; Table 8).  
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Figure 4. Maps of the five hydrogeologic explanatory input variables used in mapping GDEs 
over the study area. 
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Table 8. Table describing the scaling and reclassification of hydrogeological input explanatory 
variable values into integer classes, for inclusion in the MLMapper tool.  

Input 
Variable Integer Reclassification Spatial 

Resolution Data Source 

Surficial 
Geology 

0: Anthropogenically excavated materials, 
infilled or made materials 

1:100,000 to 
1:1,000,000 

Alberta Geological 
Survey, Maps 
618-621, and 601 

1: Bedrock (general or thin/absent), 
Organic deposits (general or peat) 

2: Fluted moraine (general or clayey-silt 
diamicton), 
Glaciolacustrine deposits (general or 
silt-clay),  
Lacustrine deposits (general, or sand, silt, 
and clay, minor deposits),  
Littoral and nearshore sediments, 
Moraine (clayey-silt diamicton or silty-sand 
diamicton),  
Stagnant ice moraine (general, clayey-silt 
diamicton, or silty-sand diamicton) 

3: Colluvial deposits (general or diamicton),  
Fluted moraine (pebbly diamicton, or 
silty-sand diamicton), 
Ice-contact sediments (stratified sand and 
silt),  
Ice-thrust moraine (general, stratified sand 
and silt, or syngenetic diamict and displaced 
sediment and/or bedrock), 
Moraine (general, pebbly diamicton, 
sandy-silt diamicton, or massive to stratified 
silty sand, pebbly sand and minor gravel) 

4: Fluted moraine (predominantly sand) 
Fluvial deposits (general, or stratified sand, 
gravel silt, clay and organic sediments) 
Glaciofluvial deposits (general, or sand with 
minor gravel) 
Ice-contact sediments (sand) 
Moraine (predominantly sand, or sand and 
gravel) 

5: Eolian deposits (general, or sand) 

Soil 
Drainage 

1: Very poorly drained 

1:1,000,000 

Soil Landscapes of 
Canada v3.2, 
Agriculture and 
Agri-Food Canada 

2: Poorly drained 

3: Moderately well drained 

4: Well drained 

5: Rapidly drained 
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Aquifer 
Hosting 
Sediment 

0:  no value 

1:3,000,000 
AER/AGS Map 632, 
Alberta Geological 
Survey  

1: Known plains upland 

2: Potential plains upland 

3: Inferred buried valley 

4: Known buried valley 

Depth to 
Water 
 
Scaling: 
multiplied 
by 100 

1: 0 - 0.1 m 

500 m Aquanty 

2: 0.1 - 0.5 m 

3: 0.5 - 1.0 m 

4: 1 - 2 m 

5: 2 - 5 m 

Bedrock 

1: Pelican Formation 

1:1,000,000 Alberta Geological 
Survey, Map 600 

2: Joli Fou Formation 

3: Grand Rapids Formation 

4: Clearwater Formation 

5: Wabiskaw Member 

6: McMurray Formation 

7: Waterways Formation 

8: Westgate Formation 

9: Lea Park Formation 

10: Fish Scales and Belle Fourche Formations 

11: Second White Specks, Carlile, and 
Niobrara Formations 

12: Keg River Formation 

 

7.2.3 Wetlands 

Two wetland inventories covering the study area and developed for the OSM program (Alberta 
Biodiversity Monitoring Institute & Ducks Unlimited Canada, 2023), were used here to map 
GDEs. The first is a map of wetland classes according to the AWCS, while the second is more 
detailed and maps the area down to AWCS wetland form (Figure 5). These represent the most 
recent wetland mapping efforts in our study area (e.g., reflecting 2020-2022 conditions), and 
possess a 10 m resolution with a 0.04 ha minimum mapping unit. Other wetland inventories 
available for the study area, such as the Alberta Merged Wetland Inventory (Alberta 
Environment and Parks, Government of Alberta, 2022), are either quite dated (e.g., 1999-2009), 
less thematically detailed (i.e., not to the form level), and/or provided at a coarser resolution 
(e.g., 30 m). As the wetland class and form inputs were already provided as integer rasters, 
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wherein each integer value represents a class or form, no scaling or further reclassification was 
needed for input into the MLMapper tool.  

In addition to wetland, the last explanatory input variable comprised a 2023 growing season 
NDVI composite covering the study area (Figure 5). This was derived from Sentinel-2 optical 
imagery acquired during May through September of 2019 to 2023 that was cloud-masked and 
composited using a per-pixel median statistical filter to produce a “best available pixel” type 
NDVI image of the 2019 to 2023 growing season greenness. Processing was done using the 
Google Earth Engine platform. Table 9 describes how the NDVI input raster was scaled and 
classified for use in the MLMapper tool.  
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Figure 5. Maps of the two wetland inventory and one NDVI explanatory input variable used in 
mapping GDEs over the study area. 
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Table 9. Table describing the scaling and reclassification of NDVI input explanatory variable 
values into integer classes, for inclusion in the MLMapper tool.  

Input Variable Integer 
Reclassification 

Spatial 
Resolution Data Source 

Normalized 
Difference Vegetation 
Index (unitless) 
 
Scaling: added 1, then 
multiplied by 1000 

1: -1.0 - 0.0 

10 m 

Calculated from 2023 ESA Sentinel-2 
summertime imagery 
(https://developers.google.com/earth-
engine/datasets/catalog/COPERNICU
S_S2_SR_HARMONIZED) 

2: 0.0 - 0.5 

3: 0.5 - 1.0  

 

7.3 Training and Test Data 

The data used for model training and cross-validation comprised 227 known GDE presence 
locations, and 227 known absence locations. These data were compiled from a combination of 
ABMI open water wetland water isotope analysis samples from the collaborative isoABMI 
project with InnoTech Alberta, Alberta Geological Survey spring and fen locations, McKay River 
differential gauging locations (Bickerton et al., 2018), local high-elevation points, and a recent 
AWCS wetland class and form inventory(Alberta Biodiversity Monitoring Institute & Ducks 
Unlimited Canada, 2023). The ABMI open water wetlands are confidential site locations and not 
provided in the corresponding data files. The wetlands were categorized using isotope mass 
balance approaches relative to their groundwater input where thresholds/categories for GDE 
presence and absence were the isotopic ratio of  groundwater > surface water,  and 
groundwater ≤ surface water, respectively based on water yield and run off calculations. Greg 
Bickerton (ECCC) provided the locations of differential gauging measurements along the 
McKay River and indicated that the reach between stations 2-4 had no evidence of significant 
groundwater discharge (i.e., surface water inputs can explain the gain in flow, whereas the 
reach between stations 5-9 had significant groundwater input). Points categorized as GDE 
absence locations were randomly placed between stations 2-4, and GDE presence locations 
were randomly placed between stations 5-9. The Alberta Biodiversity Monitoring Institute and 
Ducks Unlimited Canada (2023 OSM wetland inventory considered fen locations as GDE 
presence, and bog and upland locations as GDE absence points. Figure 6 shows the locations 
of training point data, while the numbers of samples extracted for use from these various 
sources are provided in Table 10. 
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Figure 6. Figure showing the distribution of GDE presence (blue, “yes”) and absence (grey, 
“no”) training and test points across the study area and greater area of analysis. 

Table 10. Table listing the sources of GDE presence and absence training and test data used 
to model GDEs in the study area.  

Reference Data Source GDE Presence Points GDE Absence Points 

Shallow Open Water Wetlands (isoABMI) 17 21 

OSM Wetland Inventory (ABMI & DUC 2023) 
Fens - 98 Bogs - 130 

- Uplands - 41 

Alberta Geological Survey Springs & Fens Springs & Fens - 62 - 

MacKay River differential gauging (ECCC) Drive stations - 50 Between drive 
stations - 30 

ALOS DEM  - Elevation > 700 m - 5 

Total 227 227 
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Reclassified data from the 13 explanatory variable input layers was extracted for each of the 454 
GDE presence/absence training locations, and placed into a comma-delimited text file, for 
input into the MLMapper tool. The tool was run with 100 iterations, and varying combinations 
of input variables were tested on the basis of variable importance and correlation metrics 
output by the tool after each model run. Model runs also included the use of reclassified input 
variables or scaled, original input variables, as well. Model performance metrics were used to 
select the number of iterations and which explanatory input variables to include for the final 
model run. After optimization, fine-tuning, and iteration and input variable selection were 
complete, a final model run was performed and the resulting outputs from the 
top-performing machine learning models were selected using several common model 
performance metrics, most notably the area under the curve of the receiver operating 
characteristic (AUC), which balances model sensitivity and specificity, as well as optimized test 
scores.  

Once selected, each of the top models was then mapped over the study area using a 
systematic grid of points placed 50 m apart to produce a binary map of GDE predicted 
presence and absence, which was then converted into a 50-m resolution raster map product. 
These binary outputs (the 1s and 0s, reflecting presence and absence, respectively) from the 
top-performing models were then averaged to produce a final ensemble map of predicted 
relative GDE likelihood or probability across the study area. 

As a final step, the final binary and ensemble GDE map outputs were overlaid with information 
on known, non-vegetated human footprint features so as to identify where likely GDEs overlap 
with these types of disturbances. These features were extracted from the ABMI’s Human 
Footprint Inventory 2021 (Alberta Biodiversity Monitoring Institute & Alberta Human Footprint 
Monitoring Program, 2023), and included features from the following sublayers: reservoirs; 
borrow pits, sumps, dugouts, and lagoons; roads; railways; canals; mines; and, industrial 
features. 

8. Results and Discussion 

8.1 Model Tuning and Performance 

The results of the pairwise correlation analysis performed on all 13 of the potential explanatory 
input variables is found in Figure 6. The results of the matrix are displayed using two color 
schemes along a normalized scale with green (R = 1) showing strong positive correlation and 
purple (R = -1) showing strong negative correlation. The discrimination thresholds used for 
removing correlated variables were adopted from MartÍnez-Santos et al. (2021), which are 
commonly accepted at a range between 0.7 to -0.7, although results as high as 0.84 have been 
known to be acceptable (Dormann et al., 2013). Initial results showed that wetland class and 
wetland form had a positive correlation higher than 0.75, while TRI and SWI showed a strong 
negative correlation (< -0.75; Figure 6). Outputs from the initial model run were used to assess 
which variables had higher importance to the models overall, and subsequently remove one in 
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each pair of highly correlated variables. Both wetland form and TRI were removed from the 
model as they contributed less to all models when compared to wetland class and surface 
wetness index, and were highly correlated with them, respectively (Appendix E; R1E).  Once 
these two had been removed, subsequent model runs showed the input variable correlations 
remained between 0.7 to -0.7 for all pairwise comparisons (Figure 6). 

 

 

Figure 6: Results of pairwise correlation analysis of the final selection of 11 explanatory 
variables used in mapping GDEs in the study area. Numbers in the plot show the Pearson 
correlation coefficient. These included: aquifer hosting sediment, bedrock, depth to water, 
elevation, flow accumulation, normalized difference vegetation index (NDVI), permeability, 
SAGA wetness index, slope, soil drainage, and wetland class. 

 

Table 11 lists the tuning parameters used for each of the separate machine learning algorithms 
applied to the GDE dataset, as well as the optimum number of input variables found to 
produce the best results during cross-validation. 
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Table 11. MLMapper algorithm tuning parameters and optimum number of input variables 
based on outputs from cross-validation. 

Algorithm Optimized Parameter Values Optimum Number of 
Input Variables 

Random forest classifier 

max_depth = 4 
max_features = 0.6 
min_samples_leaf = 5 
n_estimators = 141 
random_state = 0 

9 

Gradient boosting classifier 

max_depth = 9 
max_features = 0.3 
min_samples_leaf = 29 
n_estimators = 70 
random_state = 0 

11 

Ada-boost classifier 

algorithm = ‘SAMME’ 
learning_rate = 0.232065 
n_estimators = 250 
randomt_state = 0 

4 

Decision tree classifier 

max_depth = 6 
max_features = 0.8 
min_samples_leaf = 18 
min_samples_split = 0.2 
randome_state = 0 

7 

Extra-trees classifier 

max_depth = 6 
max_features = log2 
min_samples_leaf = 2 
n_estimators = 590 
random_state = 0 

3 

 

Ranked feature importance from the top five algorithms indicated that wetland classification, 
followed by the digital elevation model (DEM) were the most important features. There is a 
steep drop off in importance to the third variable which was surface wetness index, and then a 
gradual decline in importance with regards to permeability and NDVI. Depth to water table, 
bedrock and soil drainage were among the lowest ranked explanatory variables. Both aquifer 
and flow scored the lowest rank among the 11 explanatory variables (Figure 7). Individually each 
algorithm ranked the explanatory variables slightly differently, however both wetland class and 
DEM remained in the top positions across all five consistently (Figures E.1, E.2, E.3, E.4, and E.5 
in Appendix E). 
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Figure 7. Normalized explanatory feature importance based on rank from the top five 
algorithms. 

 

The model tuning and correlations show that some remote sensing products are correlated 
(Wetland Form and Wetland Class; SAGA wetness Index and Terrain roughness index) and 
highlight that some explanatory variable can have higher contributions to the model and that 
there should be moderation between input variables to balance tuning (Fildes et al., 2023).  
Consideration of derivative variables (e.g., Normalized Difference Coefficients of Variation Index 
NDCVINDVI from NDVI) may identify additional products which prove more sensitive for 
detection of GDES within the boreal (Fildes et al., 2023). Access to high resolution thermal 
imagery could improve detection of GDEs within aquatic and terrestrial systems (Birks et al., 
2012; Ala-aho et al., 2015; Autio et al., 2023; Watts et al., 2023). Although each model had a 
unique feature reduction, the limitation for all models improved predictions capability, and 
while some models were able to perform well on test scores (0.92 to 0.89) each had unique 
strengths in their ability to predict aquatic and terrestrial systems. 

The standardized performance metrics output by MLMapper showed a group of five5 
algorithms with that yielded test score results greater than 0.89 which included: random forest 
classifier (RFC), gradient boosting classification (GBC), AdaBoost classifier (ABC), decision tree 
classifier (CRT), extra-trees classifier (EXT). There is a steep drop off from below test scores of 
0.89, with the remaining models only able to predict from 0.76 to 0.55. The remaining models 
were logistic regression (LRG), linear discriminant analysis (LDA), ridge classifier (RID), 
K-neighbor classification (KNN), stochastic gradient descent linear classifier (SGD), perceptron 
(PRC), multilayer perceptron neural network (MLP), quadratic discriminant analysis (QDA), 
Passive Aggressive Classifier (PAC), and Linear Support Vector Classifier (LSVC) which struggled 
to predict GDEs with a test score of only 0.55. The discrimination threshold was therefore set at 
0.89 with algorithms scoring below being discarded from the ensemble map (Table 12).  
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Table 12. Performance metrics of supervised algorithms (Train = optimized training score; Test = optimized test score; Prec. F = 
precision false; Prec. T = precision true; Rec. F = recall false; Rec. T = recall true; F1. Sc. F = f-1 score false; F1. Sc. T = f-1 score true; AUC = 
area under curve; TN = true negatives; TP = true positives; FP = false positives; FN = false negatives). 

Algorithm Train Test Prec. F Prec. T Rec. F Rec. T F1. Sc. F F1. Sc. T AUC TN TP FP Fn 

RFC 0.91 0.92 0.92 0.92 0.90 0.93 0.91 0.93 0.97 57 69 6 5 

GBC 0.95 0.92 0.91 0.93 0.92 0.92 0.91 0.93 0.95 58 68 5 6 

ABC 0.89 0.91 0.89 0.93 0.92 0.91 0.91 0.92 0.94 58 67 5 7 

CRT 0.90 0.91 0.89 0.92 0.90 0.91 0.90 0.91 0.92 57 67 6 7 

EXT 0.91 0.89 0.86 0.92 0.90 0.88 0.88 0.90 0.94 57 65 6 9 

LRG 0.69 0.76 0.70 0.83 0.83 0.70 0.76 0.76 0.80 52 52 11 22 

LDA 0.66 0.74 0.68 0.80 0.79 0.69 0.74 0.74 0.82 50 51 13 23 

RID 0.68 0.72 0.67 0.78 0.78 0.68 0.72 0.72 - 49 50 14 24 

KNN 1.00 0.69 0.63 0.80 0.83 0.58 0.71 0.67 0.77 52 43 11 31 

SGD 0.63 0.68 0.66 0.70 0.63 0.72 0.65 0.71 - 40 53 23 21 

PRC 0.63 0.64 0.59 0.73 0.76 0.54 0.66 0.62 - 48 40 15 34 

MLP 0.54 0.61 0.58 0.64 0.57 0.65 0.58 0.64 0.64 36 48 27 26 

QDA 0.68 0.61 0.54 0.88 0.95 0.31 0.69 0.46 0.81 60 23 3 51 

PAC 0.62 0.57 0.52 0.94 0.98 0.22 0.68 0.35 - 62 16 1 58 

LSVC 0.50 0.55 0.67 0.55 0.06 0.97 0.12 0.70 - 4 72 59 2 
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The test scores of the best-performing models were all within 0.92 to 0.89, with the top 
algorithms (random forest and gradient boosting classifiers) scoring 0.92. The next highest was 
Ada boost and Decision tree classifiers at 0.91, and lastly Extra trees classifier scoring 0.89 on 
test data (Table 12). The recursive feature elimination outputs for the top five algorithms 
indicated that random forest was able to optimize test results using only 9 of the variables 
(Figure E.2A in Appendix E), while gradient boosting leveraged all 11 to achieve the same result 
of 0.92 (Figure E.2B in Appendix E), Ada-boost was able to predict an accuracy of 0.91 using 
only 4 variable (Figure E.2C in Appendix E), while decision tree needed to leverage 7 to obtain 
the same result (Figure E.2D in Appendix E). The Extra-Trees classifier was optimized at 3 
variables but achieved the lowest accuracy at 0.89 compared to the other top five (Table 12; 
Figure E.2E in Appendix E).  

8.2 Individual Model Results: Binary GDE Maps 

Random forest (RFC) was able to predict aquatic flowing systems and identified the McKay 
River as a GDE location for approximately 22 km upstream from the mouth of the Athabasca 
River. It was similarly able to identify GDE presence in the High Hill River at the confluence of 
the Clearwater River mouth approximately 10 kms into the headwaters. When assessing lake 
features, RFC labeled the centre of some lakes (e.g., two small unnamed lakes east of Fort 
McMurray (56.769341, -110.908782; 56.896575, -110.896889) as Non-GDE, while the perimeter of 
these same lakes is labeled as GDE (Figure 8: RFC). The gradient boosting classifier (GBC) was 
able to predict similar outputs to those seen in random forest (RFC) with a slightly wider buffer 
for confirmed GDEs along flowing systems, and slight differences in classifications of terrestrial 
GDEs (Figure 8: GBC). However, the AdaBoosting classifier (ABC), struggled to pick up flowing 
systems and underpredicted the McKay River (approximately 10 km from the confluence of the 
Athabasca River), and High Hill River (approximately 2 km from confluence with the Clearwater 
River). Nevertheless, it seemed to be able to predict both terrestrial and lake features similar to 
the random forest and gradient boosting classifiers (Figure 8: ABC). 

The Decision Tree classifier (CRT) was similar to AdaBoosting classifier (ABC) in its abilities to 
identify GDEs in flowing systems, and terrestrial and lakes delineations. The greatest noticeable 
difference is that it predicted GDE locations slightly larger and predicted somewhat more 
terrestrial GDEs (Figure 8). In contrast, The Extra Tree classifier (ETC) was able to predict GDEs 
in flowing systems with the highest accuracy and captured approximately 38 km of the McKay 
River and performed similarly in capturing GDEs along the High Hill River from the confluence 
of the Athabasca and Clearwater Rivers respectively. It delineated both terrestrial and lake 
feature GDEs similar to all preceding models (Figure 8). 

 

 

63 



 

Figure 8. Binary predictive GDE outputs maps from the five best algorithms: random forest 
classifier (RFC), gradient boosting classification (GBC), AdaBoost classifier (ABC), decision tree 
classifier (CRT), extra-trees classifier (EXT). The ensemble map (ENS) averages all five 
algorithms into a predictive GDE occurrence (Very Low to Very High) probability.  
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The results from the models indicate a bias in training data. Model performance in delineating 
aquatic flowing systems and terrestrial (open water wetlands) GDEs varied considerably, but all 
binary models tended to label the centre of the lake as non-GDEs while labeling the shorelines 
as GDEs. This is likely a result of the training sets including only wetland and river features (i.e., 
no lake training data), and highlights the need to include datasets from boreal lakes into the 
training model, such as the Regional Aquatic Monitoring Program (RAMP) lakes datasets, to 
improve GDE delineation in non-flowing systems(Gibson et al., 2019).     

8.3 Ensemble GDE Probability Map  

The ensemble map (ENS) averages the outputs of all five binary models and is then able to 
produce a predictive map of GDE the likelihood of a GDE based on five classes (very low to very 
high), broken down into probability steps of 20% (e.g., 1 - 20% = very low; 80% - 100% = very 
high). The ENS map highlights flowing systems well and shows lower GDE probability with 
both distance from the river and while moving into the headwaters (Figure 8). The ENS map 
also highlights small regions of terrestrial GDEs that are not consistent between all models by 
showing lower GDE probabilities in these areas (e.g., regions west of McKay River headwaters 
are identified as high GDE probability, while along the Steepbank River area some sections 
show lower GDE probability). Edge effects are seen at the two small unnamed lakes east of 
Fort McMurray, where the interior of the lake showed a lower GDE probability and the 
shoreline showed a higher GDE probability (Figure 8). 

In terms of human footprint, the top 5 models all predict several of the mining areas as being 
GDEs, resulting in their having a high probability of being GDEs in the resulting ensemble map 
(Figure 9). This is most likely a result of the input DEM data, which captures the lower 
elevations in features such as mining pits and tailings ponds and thus suggests to the models 
higher GDE likelihood. This highlights the strong role the DEM input layer plays in predicting 
GDE location and occurrence. 
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Figure 9. Binary predictive GDE outputs maps from the five best algorithms: random forest 
classifier (RFC), gradient boosting classification (GBC), AdaBoost classifier (ABC), decision tree 
classifier (CRT), extra-trees classifier (EXT). The ensemble map (ENS) averages all five 
algorithms into a predictive GDE occurrence (Very Low to Very High) probability. Both human 
footprint (mining areas; purple) and previous fire records (1999-2020; orange) overlay the area 
of analysis.   
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Overlaying fire data onto the final map seems to show that many of the previously burned 
areas are predicted to be non-GDEs or sparsely populated GDE systems on the ENS map 
(Figures 9 and 10). This could be further explored. Thompson et al., (2019) noted that peatlands 
can have a fragmenting effect during wet years, protecting the landscape from fires, with the 
inverse being true during times of drought.  

 

 

Figure 9. Map of GDE probability across the study area (white line) and area of analysis (full 
extent) produced by the ENS model. 
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Figure 10. Map of GDE probability across the study area (white line) and area of analysis (full 
extent) produced by the ENS model. Both human footprint (mining areas; purple) and 
previous fire records (1999-2020; orange) overlay the area of analysis. 

 

Figures 11 and 12 show the ENS map over a portion of the study area at a more detailed scale, 
with or without human footprint and fire features, respectively. These close-ups focus on the 
McKay River, where a buffer area around the river can be more clearly seen, and the channel of 
the river showing high GDE probability. This probability decreases with distance from the 
channel, although there are sections where shift is very less gradual and very sudden.  In the 
downstream reaches of the McKay River, the width of the high probability GDE areas 
undulates slightly in certain regions, however overall they appear to be slightly widening 
(Figure 11). Fire and human footprint do not seem to play a role in GDE predicted likelihood, 
but rather, reflect regions where fewer GDEs are present (Figure 12).  
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Figure 11. A focused look at the Fort McKay River within the study region, based on the 
ensemble of the top five mapping algorithms.  
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Figure 12. A focused look at the Fort McKay River within the study region, with both human 
footprint (purple) and previous fires 1999-2020 (orange), based on the ensemble of the top five 
mapping algorithms.  

8.4 Next Steps 

8.4.1 Alternative Modeling Approaches 

While ensemble models generally score higher in validation assessments (Dormann 2018), this 
gain in overall model fit must be considered against potential drawbacks of model averaging 
in general. Averaging outputs of multiple models has the effect of converging different values 
in individual models that may be more or less accurate for certain locations, classes, etc. So, 
whereas the ensemble model is generally more accurate, individual models may be more 
accurate for certain applications. To assess these specific applications requires a more 
comprehensive and data intensive validation process that could form part of the modeling 
work going forward. Further, to get at more accurate models for specific classes or region, 
instead of averaging all model outputs together into a single ensemble, separate modeling 
efforts could be undertaken for specific environmental features, habitats, or environments (e.g., 
separate modeling efforts for riverine vs. wetland vs. upland environments), then combined. 
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While this could result in more accurate models, it also compounds the effort and 
computational intensity of the modeling process and generally requires larger datasets, 
specific to each modeling effort, which could be a major barrier to this approach within this 
project.  

8.4.2 Model Generalization and Validation 

Models built for this project were trained and tested only within our relatively small study area, 
so their capacity for generalization to other regions (i.e., predictions in new spatial locations) 
throughout the OSR has not been rigorously tested. All model projections beyond the training 
data locations assume consistency in how explanatory variables (i.e., our 11 predictors) relate to 
response variables (i.e. existence of GDEs or not) between the model training and validation 
locations–an assumption known as stationarity. In reality, environments seldom behave in this 
way and stationarity is not maintained over larger areas, so using locally trained models to 
project to larger areas or to locations farther away in space should be done with extreme 
caution and should always, if possible, be validated with independent data from the projection 
area. There are alternative statistical cross-validation approaches that can produce better 
accuracy estimates for model projection to new areas, and these could be explored in the 
future if additional data are not available to test model projections to new areas. 

In addition to testing model capacity for projection, enhanced model validations could be 
implemented to provide more specific accuracy statistics. For example, GDE predictions could 
be validated against mapped wetland classes to provide a more comprehensive 
understanding of where (i.e., for which wetland classes) the model was performing better or 
worse. Such validations would help inform modeling next steps (including the potential 
composite modeling approach described above) by identifying the strengths and weaknesses 
of the individual models. Such a validation could also provide ecological understanding by 
comparing which predictor variables are more important in the best model for certain wetland 
classes (or other mapped features). Again, such validations would require adequate data 
resources and additional validation data could be required for underrepresented classes in the 
existing model training data. 

This first GDE project phase focused exclusively on the boreal region, with the study area 
entirely with the Athabasca OSR. Because water resources tend to be readily available for 
plants in this region, productivity tends to be relatively consistent across the area. For this 
reason, NDVI is a less powerful indicator of plant stress (i.e., discriminator of wetland vs. upland 
habitats) than it would be in, for example, more arid environments where gradients of 
productivity are more closely tied to water availability. For this reason, in arid environments, 
phreatophytes (species able to access deep water resources) would be stronger indicators of 
GDEs than they are in the boreal where the local source of their water is more uncertain. An 
additional confounder of leveraging NDVI data in the boreal is the natural fire regime, which 
can complicate the interpretation and modeling integration of NDVI values if not paired with 
knowledge of recent burns or regenerating stand ages. 
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8.4.3 Other Data & Knowledge 

There are additional data not immediately available for this first modeling effort that could 
improve model accuracies (overall or in specific environments) and potentially increase model 
generalizability or transferability. These could include other data such as: 

● Higher resolution depth to water, which could improve both aquatic and terrestrial 
GDE detection; 

● Lake datasets (i.e., RAMP lakes) to train the model to better predict lake features; 

● High resolution thermal imagery, which would better capture groundwater inputs of 
aquatic reaches such as lakes, rivers, and open water wetlands;  

● Full lidar coverage of the OSR (in progress via ABMI), which supports the development 
of very high resolution bare earth model DEMs capable of detecting smaller GDEs;  

● Updated wetland inventories for the OSR, created using high-resolution lidar; and 

● Additional consideration of burned and human footprint areas and any confounding 
effects they may have on outcomes. 

Finally, local Indigenous communities have developed deep knowledge of their traditional 
lands, including the location and importance of many GDEs (e.g., mineral licks used by local 
mammal populations). Integrating western science approaches with other ways of knowing, 
including Indigenous Knowledge, would strengthen this work. Further, there are valuable data 
being collected via Indigenous Community Based Monitoring programs within the OSR (e.g., 
isotopes, water geochemistry) that could be applicable to mapping GDEs. Opportunities for 
collaboration between western science approaches and Indigenous communities are likely to 
result in beneficial understanding for both local communities and the Oil Sands Monitoring 
program.   

9. Conclusions and Recommendations 
We developed the first aquatic GDE map (Figure 9) for a study area in the OSR to fulfill a key 
knowledge gap in the OSM program related to identifying the locations of GDEs. This work 
supports long-term planning for groundwater monitoring and could be used to assist in 
identifying where baseline, change and effects-based monitoring could be considered for GDE 
receptors. This milestone marks the successful completion of Year 1 of a multi-year project with 
the long-term objective of mapping GDEs across the OSR. While the focus of Year 1 was on 
mapping aquatic GDEs, future years aim to focus on developing methods for mapping other 
GDE categories (e.g., terrestrial, subterranean) and scaling-up the application of these 
approaches across the larger OSR.  

All three phases of work were completed: 1) developing an approach for mapping GDEs, 2) 
evaluating data availability, and 3) preliminary mapping of one GDE category in a pilot study 
area. The first phase, developing the approach, involved defining the categories of GDEs in 
Alberta’s boreal (aquatic, terrestrial, subterranean), conducting a modest literature review of 
both groundwater and biological indicators (with a focus on aquatic GDEs), and reviewing and 
selecting geospatial approaches for mapping GDEs with careful attention to methods that 
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may be suitable in boreal environments (because much more work has been done in arid 
regions globally). The literature review for biological indicators of aquatic GDEs was 
underscored by the consistent messaging, across approaches, locations, and taxa that our 
collective understanding of GDEs is lacking due to limited research and the often cryptic 
nature of these ecosystems. Suitable biological indicators for the specific identification and 
mapping of GDEs in boreal Alberta cannot be firmly backed by empirical evidence at this time, 
nor are the potential relationships between stressors, pathways, and ecological endpoint 
responses clear. The use of wetland types, e.g., bogs and various fen types, in mapping GDEs is 
supported by our understanding of the dependence of these wetlands on groundwater 
(AESRD, 2015). Considering macroinvertebrate, microbial, and stygofauna indicators, the 
paucity of information from Canada presents a limitation. That GDEs house unique 
assemblages of these taxa is clear from the literature, however defining the components and 
distribution of assemblages in boreal Alberta would require further work.  

We selected a machine-learning based geospatial approach for mapping aquatic GDEs using 
MLMapper developed by Martinez-Santos (2019) because remote sensing-based GDE 
mapping approaches are the most cost effective and accessible for large-scale application, 
machine learning approaches allow the leveraging of multiple data sources with different data 
types to support higher predictive accuracy even where data may be limited and they avoid 
challenges of bias associated with dependency on expert opinion. The specific machine 
learning approach chosen offers the ability to incorporate a wide range of geospatial data 
layers, applies a broad set of machine learning model algorithms simultaneously, and offers 
the advantage of an ensemble product that combines the highest accuracy individual models. 
Finally, the flexibility of this approach means that additional datasets can easily be 
incorporated into future applications, to test opportunities to improve model accuracy.   

The second phase, evaluating data availability, included identifying and collating available data 
for mapping GDEs, selecting appropriate data to serve as training & validation data and 
explanatory variables in MLMapper model, and identifying data gaps. Over 50 datasets were 
identified, with over 40 datasets compiled. The key data gaps are access to the McKay River 
Integrated Surface Water-Groundwater Model, hydraulic head data, and higher resolution 
thermal data. Recommended next steps to filling these data gaps include ongoing 
communication with the producers of the McKay River Model, working with AGS to access 
updated hydraulic head data in 2024/25, and evaluating additional options for higher 
resolution thermal data from satellite or aerial collection. In addition, we will continue to work 
with the Fort McKay Métis Nation to enable considerate access to their data to increase 
validation datasets and consider the use of the RAMP lake datasets to improve prediction for 
boreal lakes.  

The third phase was completed by mapping aquatic GDEs in the McKay and Steepbank River 
watersheds using the methods identified in phase 1 and the data collated in phase 2. The 
MLMapper model was trained and tested with binary GDE presence/absence data including 
from wetlands, springs, and reaches of the McKay River with differential gauging 
measurements. The final models included 11 explanatory variables, the most important being 
wetland class, DEM, surface wetness index, slope, permeability (derived from surficial geology) 
and NDVI. We selected the top five individual classifier models (GDE presence/absence), each 
of which had slightly different results (particularly for riverine GDEs), and created an ensemble 
map of GDE probability (with five classes from low to high). GDEs primarily occur along the 
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lower reaches of rivers, riparian areas and fens. Maps are presented both with and without 
non-vegetated human footprint to visualize the juxtaposition of oil sands footprint with GDE 
probability. Future modeling work aims to explore individual model accuracies for certain GDE 
classes or sub-classes, evaluate the generalizability of the model by selecting another Study 
Area with independent validation data, and test model performance with different subsets of 
explanatory variables and spatial resolution of explanatory variable datasets (because the Year 1 
Study Area likely had the highest quality data within the OSR).  

This project has highlighted the ability to leverage existing data to effectively map GDEs in a 
portion of the OSR that is fairly well studied. This proof of concept supports the expansion of 
GDE mapping to the broader OSR, while recognizing that addressing some data gaps and 
ensuring a broader set of test data is necessary to enable successful expansion. The mapping 
of GDEs completed to date and the opportunities identified for future application of these 
techniques will support the Groundwater Technical Advisory Committee in answering key 
questions as they develop a monitoring approach that will evaluate the impact of oil 
sands-related stressors on GDEs as a key environmental endpoint.  
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Appendix A. OSM Groundwater 
Conceptual Models 
 

 

Figure A.1. Flowchart illustrating the Oils Sands Monitoring groundwater conceptual model. 
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Figure A.2. Schematic diagram illustrating the Oils Sands Monitoring groundwater 
conceptual model. 
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Appendix B. Groundwater Indicator 
Literature Review 

Table B.1. List of papers included in the groundwater literature review.  

Full Citation Indicator Location 

Manuscripts in Aquatic GDE Indicators and Mapping Literature Review 
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Peatlands, Isotope, 
Thermal 

Finland 
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Gibson, J., & Noret, A. (2017). Interactions between 
groundwater and seasonally ice‐covered lakes: Using 
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M., Lohila, A., Korpelainen, P., Kumpula, T., Kløve, B., & 
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Broughton, P. L. (2018). Ghost-rock karstification of 
Devonian limestone flooring the Athabasca Oil Sands in 
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Karst formations 
Alberta Oil 
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GDE Mapping Arid 
Environment 
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GDE Mapping, 
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Semi-Arid 
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Machine Learning 

Australia 

Gerlach, M. E., Rains, K. C., Guerrón-Orejuela, E. J., Kleindl, 
W. J., Downs, J., Landry, S. M., & Rains, M. C. (2022). Using 
Remote Sensing and Machine Learning to Locate 
Groundwater Discharge to Salmon-Bearing Streams. 
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SW-GW 
interaction, Flow, 
Geochemistry, 
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Alberta Oil 
Sands Region 
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https://doi.org/10.1016/j.ejrh.2016.01.034 

SW-GW 
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isotopes, mass 
balance, Lakes 

Alberta 

Gibson, J. J., Yi, Y., & Birks, S. J. (2016b). Isotope-based 
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SW-GW 
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isotopes, mass 
balance, Rivers 

Alberta Oil 
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SW-GW 
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Isotopes, 
Wetlands, Lakes, 
Rivers, data 

Alberta Oil 
Sands Region 

Gibson, J. J., Yi, Y., & Birks, S. J. (2020). Watershed, climate, 
and stable isotope data (oxygen-18 and deuterium) for 50 
boreal lakes in the oil sands region, northeastern Alberta, 
Canada, 2002–2017. Data in Brief, 29, 105308-. 
https://doi.org/10.1016/j.dib.2020.105308 

SW-GW 
interaction, 
Isotopes, Lakes, 
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Alberta Oil 
Sands Region 
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environmental management in oil sands regions. Journal 
of Hydrology. Regional Studies, 44, 101274-. 
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Alberta Oil 
Sands Region 
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isotopes, water 
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Alberta Oil 
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Gue, A. E., Mayer, B., & Grasby, S. E. (2015). Origin and 
geochemistry of saline spring waters in the Athabasca oil 
sands region, Alberta, Canada. Applied Geochemistry, 61, 
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SW-GW 
interaction, 
Geochemistry, 
Isotopes, Springs 

Alberta Oil 
Sands Region 
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Gue, A., Grasby, S. E., & Mayer, B. (2017). Influence of saline 
groundwater discharge on river water chemistry in the 
Athabasca oil sands region – A chloride stable isotope and 
mass balance approach. 

SW-GW 
interaction, 
Geochemistry, 
Isotopes, Rivers 

Alberta Oil 
Sands Region 

Hayashi, M., van der Kamp, G., & Rosenberry, D. O. (2016). 
Hydrology of Prairie Wetlands: Understanding the 
Integrated Surface-Water and Groundwater Processes. 
Wetlands (Wilmington, N.C.), 36(Suppl 2), 237–254. 
https://doi.org/10.1007/s13157-016-0797-9 

SW-GW 
interaction, 
Wetlands, 
Geochemistry 

Alberta 

Hayashi, M., & van der Kamp, G. (2023). The role of 
Canadian research in advancing groundwater hydrology: 
historical sketches from the past 75 years. Canadian Water 
Resources Journal, 48(4), 363–378. 
https://doi.org/10.1080/07011784.2023.2177197 

SW-GW 
interaction, 
isotopes, 
Geochemistry, 
Flow, Modelling, 
Lakes, Rivers, 
Wetlands 

Canada 

Heagle, D., Hayashi, M., & Kamp, G. van der. (2013). 
Surface–subsurface salinity distribution and exchange in a 
closed-basin prairie wetland. Journal of Hydrology 
(Amsterdam), 478, 1–14. 
https://doi.org/10.1016/j.jhydrol.2012.05.054 

SW-GW 
Interaction, 
Geochemistry, 
Modelling 

Alberta 

Hein, F. J., & Cotterill, D. K. (2006). The athabasca oil sands - 
: A regional geological perspective, Fort McMurray Area, 
Alberta, Canada. Natural Resources Research (New York, 
N.Y.), 15(2), 85–102. https://doi.org/10.1007/s11053-006-9015-4 

Geology, mapping, 
Stratigraphy 

Alberta Oil 
Sands Region 

Isokangas, E., Rossi, P. M., Ronkanen, A., Marttila, H., 
Rozanski, K., & Kløve, B. (2017). Quantifying spatial 
groundwater dependence in peatlands through a 
distributed isotope mass balance approach. Water 
Resources Research, 53(3), 2524–2541. 
https://doi.org/10.1002/2016WR019661 

SW-GW 
interaction, Boreal, 
Peatlands, 
Modelling, 
Isotopes, Mapping 
GDEs 

Finland 

Klausmeyer, K., Howard, J., Keeler-Wolf, T., Davis-Fadtke, K., 
Hull, R., & Lyons, A. (2018). Mapping Indicators of 
Groundwater Dependent Ecosystems in California: 
Methods Report. The Nature Conservancy. 
https://www.groundwaterresourcehub.org/where-we-wor
k/california/mapping-indicators-gdes/ 

Mapping GDEs, 
Arid 

USA - 
California 
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Kløve, B., Ala-aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., 
Goldscheider, N., Ilmonen, J., Karakaya, N., Kupfersberger, 
H., Kvœrner, J., Lundberg, A., Mileusnić, M., Moszczynska, 
A., Muotka, T., Preda, E., Rossi, P., Siergieiev, D., Šimek, J., 
Wachniew, P., … Widerlund, A. (2011). Groundwater 
dependent ecosystems. Part I: Hydroecological status and 
trends. Environmental Science & Policy, 14(7), 770–781. 
https://doi.org/10.1016/j.envsci.2011.04.002 

GDEs, Boreal, 
Peatlands, 
Methods 

Finland 

LaRocque, A., & Leblon, B. (2022). (rep.). Remote Sensing of 
Ground-Water Dependent Ecosystems in the Oil Sands 
Area (Final Report, pp. 1–28). Fredericton, New Brunswick: 
University of New Brunswick. 

GDE mapping, 
Machine learning, 
NDVI 

Alberta Oil 
Sands Region 

Lidberg, W., Nilsson, M., & Ågren, A. (2020). Using machine 
learning to generate high-resolution wet area maps for 
planning forest management: A study in a boreal forest 
landscape. Ambio, 49(2), 475–486. 
https://doi.org/10.1007/s13280-019-01196-9 

Machine Learning, 
Wet area 
mapping, Boreal 

Sweden 

Manchuk, J. G., Birks, J. S., McClain, C. N., Bayegnak, G., 
Gibson, J. J., & Deutsch, C. V. (2021). Estimating Stable 
Measured Values and Detecting Anomalies in 
Groundwater Geochemistry Time Series Data Across the 
Athabasca Oil Sands Area, Canada. Natural Resources 
Research (New York, N.Y.), 30(2), 1755–1779. 
https://doi.org/10.1007/s11053-020-09801-5 

SW-GW 
interaction, 
Modelling, 
geochemistry, 
Boreal 

Alberta Oil 
Sands Region 

Martínez-Santos, P., Díaz-Alcaide, S., De la Hera-Portillo, A., 
& Gómez-Escalonilla, V. (2021). Mapping 
groundwater-dependent ecosystems by means of 
multi-layer supervised classification. Journal of Hydrology 
(Amsterdam), 603, 126873-. 
https://doi.org/10.1016/j.jhydrol.2021.126873 

GDE mapping, 
Machine Learning, 
Semi-arid, 
MLMapper 

Spain 

The Nature Conservancy and the Desert Research 
Institute. Global Groundwater Dependent Ecosystem 
Map, Version 1.2.0. 
https://kklausmeyer.users.earthengine.app/view/global-gd
e. June 2023 

GDE mapping, 
Arid, Google Earth 
Engine 

World 
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Pérez Hoyos, I., Krakauer, N., Khanbilvardi, R., & Armstrong, 
R. (2016). A Review of Advances in the Identification and 
Characterization of Groundwater Dependent Ecosystems 
Using Geospatial Technologies. Geosciences, 6(2), 17-. 
https://doi.org/10.3390/geosciences6020017 

GDE mapping, 
Methods, Remote 
sensing Review 

World 

Rampheri, M. B., Dube, T., Dondofema, F., & Dalu, T. 
(2023a). Progress in the remote sensing of 
groundwater-dependent ecosystems in semi-arid 
environments. Physics and Chemistry of the Earth. Parts 
A/B/C, 130, 103359-. https://doi.org/10.1016/j.pce.2023.103359 

GDE Mapping, 
Review, Remote 
sensing, Semi-arid 

World 

Rohde, M. M., Froend, R., & Howard, J. (2017). A Global 
Synthesis of Managing Groundwater Dependent 
Ecosystems Under Sustainable Groundwater Policy. 
Ground Water, 55(3), 293–301. 
https://doi.org/10.1111/gwat.12511 

Mapping GDEs, 
Policy, Methods 

World 

Rohde, M. M., Biswas, T., Housman, I. W., Campbell, L. S., 
Klausmeyer, K. R., & Howard, J. K. (2021). A Machine 
Learning Approach to Predict Groundwater Levels in 
California Reveals Ecosystems at Risk. Frontiers in Earth 
Science (Lausanne), 9. 
https://doi.org/10.3389/feart.2021.784499 

GDE Mapping, 
Machine Learning, 
GW monitoring, 
Modelling, 
Semi-arid 

USA-California 

Rosa, E., Larocque, M., Hatch, C. E., & Springer, A. E. (2023). 
Editorial: “Novel approaches for understanding 
groundwater dependent ecosystems in a changing 
environment.” Frontiers in Earth Science (Lausanne), 11. 
https://doi.org/10.3389/feart.2023.1165061 

GDE mapping, 
Review, Remote 
sensing, Modelling 

World 

Rossi, P. M., Ala-aho, P., Ronkanen, A.-K., & Kløve, B. (2012). 
Groundwater–surface water interaction between an esker 
aquifer and a drained fen. Journal of Hydrology 
(Amsterdam), 432–433, 52–60. 
https://doi.org/10.1016/j.jhydrol.2012.02.026 

SW-GW 
interaction, 
Mapping, 
Modelling, 
Geochemistry, 
Boreal, Peatlands 

Finland 

Schmidt, A., Gibson, J. J., Santos, I. R., Schubert, M., Tattrie, 
K., & Weiss, H. (2010). The contribution of groundwater 
discharge to the overall water budget of two typical Boreal 
lakes in Alberta/Canada estimated from a radon mass 
balance. Hydrology and Earth System Sciences, 14(1), 
79–89. https://doi.org/10.5194/hess-14-79-2010 

Radon, Water 
balance, Boreal, 
Lakes, Isotopes, 
Modelling 

Alberta Oil 
Sands Region 
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Full Citation Indicator Location 

Serov, P. A., & Kuginis, L. (2017). A groundwater ecosystem 
classification-the next steps. International Journal of 
Water, 11(4), 328-362. 

GDE definition World 

van der Kamp, G., & Hayashi, M. (2009). 
Groundwater-wetland ecosystem interaction in the 
semiarid glaciated plains of North America. Hydrogeology 
Journal, 17(1), 203–214. 
https://doi.org/10.1007/s10040-008-0367-1 

SW-GW 
interaction, 
Modelling, 
geochemistry, 
Prairies 

Alberta 

Walker, J., Almasi, I., Stoakes, F., Potma, K., & O’Keefe, J. 
(2017). Hypogenic karst beneath the Athabasca Oil Sands; 
implications for oil sands mining operations. Bulletin of 
Canadian Petroleum Geology, 65(1), 115–146. 
https://doi.org/10.2113/gscpgbull.65.1.115 

Karst formations, 
stratigraphy 

Alberta Oil 
Sands Region 

Watts, C. L., Hatch, C. E., & Wicks, R. (2023). Mapping 
groundwater discharge seeps by thermal UAS imaging on 
a wetland restoration site. Frontiers in Environmental 
Science, 10. https://doi.org/10.3389/fenvs.2022.946565 

GDE mapping, 
thermal, wetlands 

USA - 
Massachusett
s 

Wells, C. M., & Price, J. S. (2015). The hydrogeologic 
connectivity of a low-flow saline-spring fen peatland 
within the Athabasca oil sands region, Canada. 
Hydrogeology Journal, 23(8), 1799–1816. 
https://doi.org/10.1007/s10040-015-1301-y 

SW-GW 
interaction, 
Peatlands, Boreal, 
Geochemistry 

Alberta Oil 
Sands Region 
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Appendix C. Biological Indicator Literature 
Review 

Table C.1. List of papers included in the biological literature review. Papers are sorted by 
indicator category, then by lead author. Papers not included in the text of the literature review 
but that provide supporting information for aquatic, terrestrial, and subterranean ecosystems 
are listed at the bottom. 

Full Citation Indicator Category Location 

Manuscripts explicitly included in Aquatic GDE Literature Review 

Cooper, D. J., & Andrus, R. E. (1994). Patterns of vegetation 
and water chemistry in peatlands of the west-central Wind 
River Range, Wyoming, U.S.A. Canadian Journal of Botany, 
72(11), 1586–1597. https://doi.org/10.1139/b94-196 

Vegetation 
Wyoming, 
USA 

Elmes, M. C., Davidson, S. J., & Price, J. S. (2021). 
Ecohydrological interactions in a boreal fen–swamp 
complex, Alberta, Canada. Ecohydrology, 14(7), e2335. 
https://doi.org/10.1002/eco.2335 

Vegetation 
Poplar Fen, 
Alberta 

Glaser, P. H., Siegel, D. I., Reeve, A. S., Janssens, J. A., & 
Janecky, D. R. (2004). Tectonic drivers for vegetation 
patterning and landscape evolution in the Albany River 
region of the Hudson Bay Lowlands. Journal of Ecology, 
92(6), 1054–1070. 
https://doi.org/10.1111/j.0022-0477.2004.00930.x 

Vegetation 
Hudson Bay 
Lowlands, 
Canada 

Jeglum, J. K. (1991). Definition of trophic classes in wooded 
peatlands by means of vegetation types and plant 
indicators. Annales Botanici Fennici, 28(3), 175–192. 
https://www.jstor.org/stable/23725328 

Vegetation 
Ontario, 
Canada 

Kuglerová, L., Dynesius, M., Laudon, H., & Jansson, R. (2016). 
Relationships Between Plant Assemblages and Water Flow 
Across a Boreal Forest Landscape: A Comparison of 
Liverworts, Mosses, and Vascular Plants. Ecosystems, 19(1), 
170–184. https://doi.org/10.1007/s10021-015-9927-0 

Vegetation 
Boreal 
Sweden 

Larocque, M., Ferlatte, M., Pellerin, S., Cloutier, V., Munger, J. 
L., Paniconi, C., & Quillet, A. (2016). Chemical and botanical 
indicators of groundwater inflow to Sphagnum-dominated 
peatlands. Ecological Indicators, 64, 142–151. 
https://doi.org/10.1016/j.ecolind.2015.12.012 

Vegetation Quebec, 
Canada 
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Full Citation Indicator Category Location 

Munger, J., Pellerin, S., Larocque, M., & Ferlatte, M. (2014). 
Espèces végétales indicatrices des échanges d’eau entre 
tourbière et aquifère [Plant species indicative of water 
exchange between bog and aquifer]. Le Naturaliste 
canadien, 138(1), 4–12. https://doi.org/10.7202/1021038ar 

Vegetation 
Quebec, 
Canada 

Vitt, D. H., & Chee, W.-L. (1990). The relationships of 
vegetation to surface water chemistry and peat chemistry 
in fens of Alberta, Canada. Vegetatio, 89(2), 87–106. 
https://doi.org/10.1007/BF00032163 

Vegetation 
Alberta, 
Canada 

Vitt, D. H., House, M., & Glaeser, L. (2022). The response of 
vegetation to chemical and hydrological gradients at a 
patterned rich fen in northern Alberta, Canada. Journal of 
Hydrology: Regional Studies, 40, 101038. 
https://doi.org/10.1016/j.ejrh.2022.101038 

Vegetation Alberta, 
Canada 

Wells, C. M., & Price, J. S. (2015). A hydrologic assessment of 
a saline-spring fen in the Athabasca oil sands region, 
Alberta, Canada – a potential analogue for oil sands 
reclamation. Hydrological Processes, 29(20), 4533–4548. 
https://doi.org/10.1002/hyp.10518 

Vegetation 
Alberta, 
Canada 

Lehosmaa, K., Jyväsjärvi, J., Ilmonen, J., Rossi, P. M., 
Paasivirta, L., & Muotka, T. (2018). Groundwater 
contamination and land drainage induce divergent 
responses in boreal spring ecosystems. Science of The Total 
Environment, 639, 100–109. 
https://doi.org/10.1016/j.scitotenv.2018.05.126 

Vegetation; 
Microbes; 
Macroinvertebrates 

Finland 

Febria, C. M., Beddoes, P., Fulthorpe, R. R., & Williams, D. D. 
(2012). Bacterial community dynamics in the hyporheic 
zone of an intermittent stream. The ISME Journal, 6(5), 
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Appendix D. Data Compilation 

Table D.1. Full list of datasets compiled to support GDE mapping in the oil sands region. 

Categories Data Name 

Climate Climate data (Data gap) 

Geography Annual Unit Runoff 

Geography Digital Elevation Model (DEM) - Advanced Land Observing 
Satellite (ALOS) 

Geography Flow Accumulation - ALOS Derived 

Geography Flow Direction - ALOS Derived 

Geography HUC 8, 10 

Geography Slope - ALOS Derived 

Geography Topographic Wetness Index (TWI)- ALOS Derived 

Geology AGS DIG_2023_0017 (Modelled Surfaces of Quaternary Units 
NAOS) 

Geology AGS REP_99 (Paleogeography,Evaporite Karstification, and Salt 
Cavern Potential) 

Geology Bedrock (Map 600) 

Geology DIG_2023_0017 (Modelled Surfaces of Quaternary Units NAOS) 

Geology MAP_632; DIG_2022_0031 

Geology Permafrost presence 

Geology Permeability - derived from geological materials 

Geology Quaternary Unit Picks in the North Athabasca Oil Sands (NAOS) 
Region 

Geology Subterranean data (Data gap) 

Geology surficial geological maps (bedrock) 

Geology surficial geological maps (bedrock) - updated - Maps 618-621 

Groundwater Aquanty: Depth to water tables, exchange fluxes, groundwater 
seepage along the Athabasca River 
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Categories Data Name 

Groundwater 
Base of Groundwater Protection Data (estimated elevation for 
the base of the deepest formation that is likely to contain 
nonsaline groundwater) 

Groundwater DIG_2014_0025 (Springs) [Locations, Chemistry] 

Groundwater Distribution of Hydraulic Head in the Peace River / Viking / Bow 
Island Hydrostratigraphic Unit 

Groundwater Higher resolution groundwater level  (Data gap) 

Groundwater Hydraulic head  (Data gap) 

Groundwater Kisters Surface and Groundwater data 

Groundwater Map 593 (Distribution of Total Dissolved Solids in the Peace River 
/ Viking / Bow Island Hydrostratigraphic Unit) 

Groundwater Map 594 (Distribution of Hydraulic Head in the Peace River / 
Viking / Bow Island Hydrostratigraphic Unit) 

Groundwater Map 596 (Distribution of Total Dissolved Solids in the Grand 
Rapids Hydrostratigraphic Unit) 

Groundwater Map 597 (Distribution of Hydraulic Head in the Grand Rapids 
Hydrostratigraphic Unit) 

Groundwater Map 612 (Distribution of Total Dissolved Solids in the McMurray 
Hydrostratigraphic Unit) 

Groundwater Map 613 (Distribution of Hydraulic Head in the McMurray 
Hydrostratigraphic Unit) 

Groundwater Operators/EIAs GW Chemistry 

Groundwater Operators/EIAs Water Levels 

Groundwater Spring Compilation (AGS) 

Groundwater Spring Compilation (InnoTech) 

Groundwater Thalwegs 

Groundwater and 
Surface water 2022 Water Use Data 

Groundwater and 
Surface water EarthFX data (Data gap) 

Human Impact Data Data on land use changes (Data gap) 
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Categories Data Name 

Landcover Biological data (Data gap) 

Landcover Eco_AB_10TM - this has 4 scales of ecosite from Agriculture 
Canada  

Landcover FinalEBM - Harvest, Fire, PreHarvest, SitePrep and SiteEquip 
layers (ABMI) 

Landcover Forest Fire Polygons 

Landcover Higher resolution thermal data (Data gap) 

Landcover Soil Landscapes of Canada  

River and Lake Surveys Isotope Sampling (ISO ABMI) 

River and Lake Surveys RAMP Hydrometric Monitoring Locations 

River and Lake Surveys RAMP Water Quality Monitoring Locations 

River Surveys Electromagnetic (EM31) Surveys (InnoTech/Advisian) 

River Surveys Water quality/LTRN 

River Surveys WSC/RAMP Stream Gauging 

Surface Water Kisters - 2022-23-osm-wetland-monitoring-surface-water-quality 

Surface Water Surface water/ groundwater interaction (Data gap) 

Various Temporal resolution data (Data gap) 

Wetland surveys OSM Wetland Inventory Pilot Area (ABMI/DUC) 
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Appendix E. Additional Results Figures 
 

 

Figure E.1. Results of pairwise correlation analysis of initial 13 explanatory variables to be used 
in the models. Numbers in the plot show the Pearson correlation coefficient. The explanatory 
variables used were: aquifer hosting sediment, bedrock, depth to water, elevation, flow 
accumulation, normalized difference vegetation index (NDVI), permeability, SAGA wetness 
index, slope, soil drainage, topographic roughness, wetland class, and wetland form.   
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A) 

 

B) 

 

C)  

 

D) 

 

E) 

 

 

Figure E.2. Outcome of recursive feature reduction for the top five models showing 
optimization of explanatory features.   
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Figure E.3. Random forest classifier weighted feature importance normalized to sum of 1 (left). 
Permutation features importance (right).   

 

Figure E.4. Gradient boosting classifier weighted feature importance normalized to sum of 1 
(left). Permutation feature importance (right). 
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Figure E.5. AdaBoost classifier weighted feature importance normalized to sum of 1 (left). 
Permutation feature importance (right). 

 

Figure E.6. Decision Tree classifier weighted feature importance normalized to sum of 1 (left). 
Permutation feature importance (right). 
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Figure E.7. Extra Tree classifier feature importance. Weighted feature importance normalized 
to sum of 1 (left). Permutation feature importance. 
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