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Climate change presents a major threat to biodiversity, particularly in northern ecosystems. This study in-
vestigates the impacts of climate change and forest management on bird species assemblages in the boreal forests
of Québec over the 2020-2100 horizon. Using spatially explicit simulations of forest landscapes and empirical
abundance models for 73 bird species, we examined shifts in bird species distributions and habitat changes under
various climate scenarios. Our findings highlight a range of sensitivity among bird assemblages across latitude.
Results indicate that species associated with boreal coniferous and mixed forests are at greater risk of population
decline, especially in southern regions, compared to more generalist species, which showed greater adaptability
to changing conditions. The study incorporated the effects of wildfire, demonstrating its significant influence on
bird distribution shifts along an east-west axis. Notably, increases in wildfires, especially in the northwest of the
study area, may drive northwestward shifts of species associated with human-temperate forests, which can
benefit from landscapes dominated by younger stands and pioneer tree species. Additionally, results show that
climate change, directly and indirectly via increased wildfires, is the primary driver of habitat shifts for bird
species, with its relative contribution projected to exceed forest management impacts by 2100. This research
underscores the necessity of integrating disturbance regimes and comprehensive habitat modeling to better
predict and manage climate change impacts on avian biodiversity in boreal ecosystems. Our results suggest that
targeted conservation actions will be crucial for mitigating future climate-driven distribution shifts and popu-
lation declines of boreal birds.

1. Introduction production forestry, which involves structural changes, including shifts
in age-class distribution, corresponding to a loss of older forests to the
expanse in early-successional and young forest stands, (Biirgi et al.,

2017; Drapeau et al., 2009a; Mackey et al., 2023). These changes can

Boreal forests are increasingly affected by warming temperatures,
changing precipitation patterns, and extreme weather events associated

with climate change (Gauthier et al., 2015). The fact that these forests
are intimately linked to cold and humid climates makes them particu-
larly vulnerable to increasing temperatures (Price et al., 2013). These
changes are likely to alter species habitat distribution and availability
(IPCC, 2021; Price et al., 2013; Régniere et al., 2012). Moreover, such
changes may be cumulative, considering that forest management prac-
tices in boreal regions have increasingly shifted natural forests towards

affect habitat quality and availability for wildlife, especially species that
rely on older forest structures (Blois et al., 2013; Drapeau et al., 2009b;
Mantyka-Pringle et al., 2012; Oliver and Morecroft, 2014).

Birds are a key element of boreal forest ecosystems and are essential
for maintaining ecosystem functions and services (Blancher and Wells,
2005; Cadieux et al., 2023; Martin et al., 2004). However, forest man-
agement practices have led to changes in forest cover, notably through a
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shift in forest age classes. The overall extent of older forests has
decreased considerably, balanced by increases in regenerating and
early-successional stands (Drapeau et al., 2009a; Gauthier et al., 2009;
Mackey et al., 2023), and resulting in changes in bird density and dis-
tribution (Betts et al., 2022; Drapeau et al., 2016, 2000). At the same
time, many species’ ranges are projected to shift in size, latitude, and
elevation under future climates (Virkkala and Lehikoinen, 2014). While
global climate and land-use changes may ultimately lead to species
extinction, community reorganization, and biotic homogenization, un-
derstanding the complex interactions between these two dominant
drivers of global environmental change and their impacts on species and
communities remains a dynamic area of research. In the boreal region,
future projections based on bioclimatic models have suggested the po-
tential for dramatic species range shifts, depending on disturbance dy-
namics and the rate of forest change (Bateman et al., 2020; Berteaux
et al.,, 2018; Stralberg et al., 2015a, 2015b). Given extensive forest
management and industrial development activities, it is important to be
able to consider climate change and forest management simultaneously
(Bouderbala et al., 2023; Cadieux et al., 2020; Labadie et al., 2024b;
Raymundo et al., 2024).

Understanding the potential effects of global change on bird as-
semblages requires an understanding of spatial heterogeneity in land-
scape changes. The boreal forest is characterized by relatively low
productivity and is dominated by few broadly distributed tree species
within the Picea, Abies, Pinus, Populus, Betula and Larix genera (Lenihan,
1993; McKenney et al., 2007). Despite relatively low tree species rich-
ness, boreal forest stands exhibit high habitat heterogeneity, shaped by
active natural disturbance regimes, and a diversity of physical setting (i.
e., topography and soil characteristics) (Price et al., 2013). In the context
of a warming climate, the boreal forest is expected to have a higher
proportion of deciduous vegetation (Boulanger and Pascual Puigdevall,
2021). This, combined with a progressive decrease in the extent of older
forests because of increased disturbances, both from forest harvesting
and natural origins, may be one of the major threats to the integrity of
boreal communities (Cadieux et al., 2020; Cadieux and Drapeau, 2017;
Carroll, 2007; Drapeau et al., 2000; Janssen et al., 2009; Labadie et al.,
2024a). Yet, there has been little focus on the variability among birds in
their responses to these interacting environmental pressures. To fill this
research gap, we combined LANDIS-II, a spatially explicit simulation
model of forest landscapes (Scheller et al., 2007) with empirical
machine-learning models of bird abundance and distribution (Labadie
et al., 2024b), developed from point-count data compiled by the Boreal
Avian Modeling Project (BAM; Barker et al., 2015). From these spatially
explicit models, we projected the impacts of climate change and forest
management scenarios on bird populations over a large portion of the
eastern North American boreal forest. The diverse regional character-
istics pertaining to the vast commercial forest (~423,000 kmz) of
Québec offer a unique opportunity to examine the spatial heterogeneity
of future boreal forest ecosystems induced by climate- and forest
management-changes. While recent studies have examined the effects of
climate and forest management in specific regions of Québec (e.g.,
Bouderbala et al., 2023; Labadie et al., 2024b), our study extends this
approach across all commercial forests in Québec. This comprehensive
spatial coverage enables a detailed analysis of how drivers of change
impact bird assemblages and bioclimatic subdomains across a much
larger and more heterogeneous landscape.

We conducted spatially explicit simulations of forest landscapes to
estimate how changes in forest composition and structure would alter
individual bird densities, habitat suitability and distribution based on
BAM empirical models of distribution and abundance for 73 bird spe-
cies. We synthesized the results at the level of species assemblages
associated with specific forest habitats rather than focusing on individ-
ual species trends. This approach allowed us to examine broader habitat-
based trends, which align more closely with the study’s objectives.
Indeed, our research specifically focused on understanding how the
impacts of forest management and climate change vary across different
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assemblages of species associated with specific forest habitats, how the
responses of these bird species assemblages differ spatially, and how the
drivers of change vary across bird assemblages and bioclimatic
subdomains.

2. Methods
2.1. Study areas

Our study area includes the hemiboreal and boreal zones of the
commercial forests of Québec (Canada) (Fig. 1). The boreal zone in the
north is mainly composed of coniferous species, described as the black
spruce-feathermoss bioclimatic domain, whereas the southern fringe is
represented by the mixedwood balsam fir-white birch bioclimatic
domain (Fig. 1, Saucier et al. (1998); Talbot (2008). The hemiboreal
zone is in the mixed forest subzone and is represented by the balsam fir-
yellow birch bioclimatic domain (Fig. 1). Forest stands established in
different topographic, geological, and geomorphologic contexts were
represented in this extensive study area, which covered most of the
contiguous commercial forests of Québec.

2.2. Model overview

This research features the projection of population densities for
multiple bird species within projected forest landscapes, considering
different scenarios of climate change and forest management (Fig. 2).
The forest landscape simulations used in this study were obtained from
Boulanger and Pascual Puigdevall (2021). Our investigation integrates
models of bird species densities derived from avian point count data
spanning from 1996 to 2022, originating from the Boreal Avian
Modeling (BAM) project (Barker et al., 2015). Point-count data were
used to develop predictive models linking bird densities with forest
characteristics (see Labadie et al., 2024b and below for details). From
these models, we projected expected density for individual bird species
within future simulated forest landscapes subjected to two levels of
forest harvesting (No harvest and Harvest) and encompassing three
CMIPS (Taylor et al., 2012) climate change scenarios. The first climate
scenario, referred to as the baseline scenario, and the other two sce-
narios, namely Representative Concentration Pathway (RCP) 4.5 and
RCP 8.5, were used to project future climate conditions (Van Vuuren
et al., 2011). RCP 4.5 represents a moderate warming scenario with
stabilized emissions at year 2100, whereas RCP 8.5 is a high-emissions
scenario with more severe projected warming and no stabilization of
the emissions. We synthesized the results at the level of species assem-
blages associated with specific forest habitats rather than by individual
species (see section 5b). Bird assemblages were determined with a
redundancy analysis (RDA) coupled with a hierarchical cluster analysis.
We used predicted species densities and environmental variables from
the reference year as inputs for the RDA. Species scores from the RDA
were then used to group species into assemblages based on habitat
associations.

2.3. Spatially explicit forest simulation model

Below, we provide an overview of the main components of the
different models and forest landscape details (detailed in Appendix S1
Section S1). Readers interested in obtaining additional information
regarding these aspects can consult Appendix S1 Section S1 and other
studies, such as Boulanger and Pascual Puigdevall (2021) for details on
the forest simulation model.

In this study, future forest landscape projections were generated
based on three different global warming trajectories (Van Vuuren et al.,
2011). To project future climate conditions, we used results obtained
from the Canadian Earth System Model version 2 (CanESM2). The first
scenario, referred to as the baseline scenario, assumed no climate
change and projected current (1981-2010) climate conditions
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Fig. 1.. Location of the study area (in light green) in the province of Québec, Canada and the North American boreal zones in Canada (following Brandt, 2009). On
the right, the three bioclimatic subdomains (Robitaille and Saucier, 1998) of Québec’s commercial forests are shown. The study area represents 7% of the Canadian
boreal and hemiboreal zones. Sources of the basemap: Esri, HERE, Garmin, OpenStreetMap contributors, and the GIS User Community (ESRI).

throughout the simulation period. The other two scenarios, RCP 4.5 and
RCP 8.5, were based on increased anthropogenic radiative forcing and
were used to project future climate conditions. RCP 4.5 was considered
more optimistic with an anticipated temperature increase of around 3 °C
in the study area, while RCP 8.5 was viewed as more pessimistic, pre-
dicting an increase of 7.5 °C in the study area by 2100 compared to
2000.

LANDIS-II v6 (Scheller and Mladenoff, 2004) was used to conduct
forest landscape simulations. LANDIS-II is a raster-based spatially-
explicit forest landscape model that dynamically simulates ecological
processes at both the stand- and landscape scales, accounting for dis-
turbances, seed dispersal, and competition between tree cohorts
(Scheller et al.,, 2007). Changes in temperature and precipitation
resulting from climate change are considered, as they affect tree species’
growth and establishment parameters (Lexer and Honninger, 2001), as
well as the natural disturbance regime. Forest succession emerges from
interactions between tree cohorts, based on those growth and estab-
lishment parameters and fixed species traits (e.g., shade tolerance,
longevity, seed dispersal, etc.), in addition to disturbance history and
resulting mortality. The simulated area was the full extent of the com-
mercial forests of Québec. Spruce budworm outbreaks, windthrow and
climate-induced changes in wildfires were included as natural distur-
bances. Adjusting the growth and regeneration rates of various tree
species at the individual stand level was conducted through the Biomass
Succession v3.2 extension (Scheller and Mladenoff, 2004). Additionally,
future fire dynamics were calibrated in line with Boulanger et al. (2014),
treating them as probabilistic occurrences across the landscape using the
Base Fire v3.0 extension. Recurrent spruce budworm infestations,
occurring every 40 years, were modeled using the Biological

Disturbance Agent extension (Sturtevant et al., 2004), which prioritized
balsam fir, along with white and black spruce as primary hosts in
descending order of susceptibility. Logging activities were represented
through simulations conducted with the Biomass Harvest extension
(v3.0; (Gustafson et al., 2000). We assessed the impact of a business-as-
usual forest management scenario that emulates ecosystem-based forest
management complying with Québec legislation on sustainable forest
development (Québec, 2013). The prescriptions for each forest man-
agement unit (FMU) were defined based on various stand- (local soil and
vegetation characteristics) and FMU-level parameters, including the
proportion of biomass harvested during each harvest event, harvested
patch size, minimum stand age for harvest, which cohort should be
harvested, and the proportion of the FMU that should be harvested per
timestep according to this prescription. Harvesting prescriptions details
can be found in Boulanger and Pascual Puigdevall (2021). In summary,
harvesting in the southern part of the study area was mainly simulated
as small-patch partial harvest, notably in deciduous stands, whereas in
the northernmost part of the study area, large patch clear-cutting was
much more common. Harvest rates remained constant throughout the
simulations, unless there were insufficient stands that met the criteria
for harvest, in which case harvest proceeded until no more eligible
stands were available.

Simulations were conducted using a 10-yr time step and a 250-m
resolution for 130 years, beginning in 2020 for each of the three radi-
ative forcing scenarios. Each scenario was replicated five times, to
consider the effects of stochastic parameters (Boulanger and Pascual
Puigdevall, 2021). For the purpose of this study, we cropped Boulanger
and Pascual Puigdevall (2021) simulation results to the study area while
constraining our interpretation of the results to the first 80 years
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Fig. 2.. Schematic representation of the simulation design implemented in this study. (1-2) Data on bird observations were used to build species-specific predictive
density models. (3) A forest landscape model, LANDIS-II, was used to simulate stand- (i.e., individual tree establishment, growth, and mortality) and landscape-scale
dynamics (seed dispersal, natural, and anthropogenic disturbances), allowing climate change and land use to differentially impact forest landscapes. (4) LANDIS-II
simulation outputs were used along with vegetation-based bird density models to project future distributions and densities of 73 bird species. (5) We then conducted
analyses on bird assemblages that were determined with a redundancy analysis coupled with a hierarchical cluster analysis.

(2020-2100).

2.4. Bird species abundance models

Species abundance models were developed according to methods
described in Labadie et al. (2024b) and summarized here. In summary,
boosted regression tree models were built using an avian point-count
dataset assembled by the Boreal Avian Modeling Project (BAM; boreal-
birds.ca) and standardized using detectability offsets described in
Solymos et al. (2013). The BAM dataset contains data from various
sources, including the volunteer Breeding Bird Survey (BBS; pwrc.usgs.
gov/bbs), the Québec 2nd breeding bird atlas (Robert et al., 2019), and
institutional and individual contributors. Common forest landbird spe-
cies were selected based on seasonal histograms of eBird sightings,
resulting in 79 species (Table S1). We used a total of 64,107 surveys
conducted at 33,674 unique locations (all of the observations contained
within our study area). To develop the models, we randomly subsampled
one survey per location (Table S1). For each of these species, we
modeled density (males/ha) as a function of different vegetation and
landscape variables using Boosted Regression Trees (BRT; Elith et al.,
2008) with a Poisson distribution. We capped the number of trees at
10,000, and used a learning rate of 0.001, bag fraction of 0.5, and
interaction depth of 3, as recommended by Elith et al. (2008) and
consistent with Stralberg et al. (2015b). We used 47 variables charac-
terizing the forest structure and composition at local and landscape
scales (Table S2). To ensure compatibility with LANDIS-II outputs,

namely species-specific biomass and stand age, vegetation variables
were based on predictive models derived from the Canadian National
Forest Inventory and 250-m MODIS imagery, which provide similar
variables (Beaudoin et al., 2018, 2014). Covariates used for bird model
fitting were either assumed static (e.g., water bodies, wetland) or dy-
namic and allowed to change between simulations and time steps in
LANDIS-II simulations (i.e., tree species biomass, age, and climate
covariates). As suggested by Chandler and Hepinstall-Cymerman
(2016), variables were quantified at two spatial extents: the original
value assigned to each 250-m cell (6.25 ha “local effect”) and mean
values at the landscape scale based on a Gaussian filter with sigma =
750 m (focalweight function in the raster package, Hijmans and van Etten
(2012)), which included information from an area up to ~700 ha (1500-
m radius). The gbm.step function in the dismo package (Hijmans et al.,
2022) was used to build and predict the models. Pseudo-R? (deviance
explained) based on cross-validation mean deviance values was used as
an indicator of model explanatory power (Table S1) and variable
importance scores for vegetation and climate predictors were used to
assess the relative contributions of individual predictors in each species’
model (Table S3). This allowed projecting population distributions for
each bird species at multiple time steps, as well as bird assemblages
associated with each forest cover and age class (i.e., habitat), that we
determined with a redundancy analysis coupled with a hierarchical
cluster analysis (as detailed in 5.a. Bird assemblage analyses and in
Table S1).
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2.5. Data analyses

In this study, we examined the projected changes in bird abundance
and core habitat size, categorized into distinct assemblages, with a
particular emphasis on sensitive species (i.e., species projected to un-
dergo substantial changes — either an increase or decrease of >25 % —
in their population abundance or core habitat size). Our analysis pri-
marily focused on the most severe climate change scenario, RCP 8.5, and
its implications due to shifts in forest composition by the year 2100 (see
Appendix S1 Section S1 for details). We initially included 79 bird species
to determine assemblages based on their forest habitat preferences,
ensuring a comprehensive representation of the ecosystem. However,
for subsequent analyses, we removed 6 species as models describing
their density exhibited very low pseudo-R-squared values, indicating
insufficient predictive power. This approach allowed us to maintain the
robustness of the assemblage determination while ensuring the reli-
ability of the cumulative impact analyses.

a. Bird density estimates and core habitat

We used the projected density estimates obtained from the BRT
models applied to LANDIS-II outputs to estimate the pixel-level density
(breeding males/ha) of each bird species at each time step. The out-
comes from the five replicates were averaged for every climate scenario
and time step. Each projected density map was rescaled at a 5-km res-
olution to smooth out variation associated with local heterogeneity, and
summed up to obtain abundance estimates. The core habitat for a given
bird species was then defined as the grid cells where the model-predicted
density in 2020 exceeded the median reference predicted density for
that species within the model-building area (as in (Stralberg et al.,
2015a).

b. Bird assemblage analyses

We conducted further analyses on bird assemblages (i.e., sets of
species that share, at least partially, similar habitat requirements) rather
than on individual species to understand cumulative impacts of climate
change and forest management on bird assemblages and how their re-
sponses may differ spatially. To do so, we conducted a redundancy
analysis coupled with a hierarchical cluster analysis to determine bird
assemblages based on their forest habitat preferences.

2.5.1. Redundancy analysis

A redundancy analysis (RDA) was performed to assess affinities of
bird species with environmental explanatory variables and hence to
define bird assemblages. Redundancy analysis, a method similar to
multiple regression but for a matrix of dependent variables, combines
ordination and regression components to identify patterns in response
data that are best described by the particular subset of environmental or
predictor factors used (Legendre and Legendre, 2012). The multivariate
species variables were the predicted densities of birds smoothed at 5-km
obtained from the BRT. We used the Hellinger-transform method to
reduce the importance of rare species (Borcard et al., 2018; Legendre
and Gallagher, 2001). This transformation is particularly suited to data
with low counts and many zeros. The environmental variables (n = 47)
were standardized before analyses (Borcard et al. (2018); more details in
Table S2). Only significant environmental factors from the preliminary
analysis were used in the final iteration (n = 28), and the final set of
environmental variables was chosen in a preliminary RDA using forward
selection (a = 0.001), as recommended by Leps and Smilauer (2003)
(Table S4). The RDA was performed with the rda function in the vegan
package (Oksanen, 2017) in R version 4.2.2 (R Core Team, 2021).
Variance inflation factors (VIF, threshold value of 10; (Borcard et al.,
2018)) were calculated to ensure that multicollinearity among the pre-
dictor variables retained for analyses was avoided (Zuur et al., 2010).
The global significance of the RDA was performed with a permutation
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2.5.2. Hierarchical cluster analysis

The environmental variables explained 75.9 % of the variation in
predicted densities of bird assemblages across sites. The first two axes of
the RDA explained 60.3 % of the total variance, with the first axis alone
explaining 45.8 %. The species-specific RDA scores from axes 1 and 2
were used in a hierarchical cluster analysis to determine bird assem-
blages based on their forest habitat preferences as characterized by the
environmental variables. Species scores were proportionally scaled to
both axes’ eigenvalues. We then calculated a pairwise Euclidian distance
matrix between species based on the scores of the two axes and ran a
hierarchical cluster analysis on this matrix with complete linkage as the
clustering method. Four clusters were determined by maximizing the
Silhouettes index with the as.clustrange function from the WeightedCluster
package (Studer, 2013) in R.

2.5.3. Bird assemblage specificity

We then assessed the main environmental variables associated with
each bird assemblage. To do so, we selected point-count locations used
in the BRT model where at least half of the bird species within a chosen
assemblage were predicted to be present. From all those selected sites,
the environmental characteristics used (e.g., the total tree biomass,
mean stand age, urban development, proportion of water, proportion of
boreal coniferous and deciduous stands and the proportion of ther-
mophilous coniferous and deciduous stands) were summarized.

c. Bird species and assemblage’s responses under the cumulative
impact of climate change and forest management

We have chosen to focus on the outcomes related to bird assemblage
responses and have therefore provided a brief description of the land-
scape composition changes in the Appendix S1 Section S1.

2.5.4. Bird species abundance

We evaluated changes in the abundance of each individual bird
species within each of the three bioclimatic subdomains by calculating
the difference of the simulated abundance predicted under the climate
forcing scenarios at year 2050 and 2100 relative to the simulated
abundance predicted under the reference period (i.e., in 2020). For each
climate scenario and time step, the cumulative impact of forest man-
agement and climate change were considered important when a given
bird species showed >25 % change in abundance (either decrease or
increase) compared with the reference period (i.e., sensitive species) as
in Cadieux et al. (2020). The rationale for using this percentage of
change to identify sensitive species is in line with IUCN scores to
consider species populations that show a moderate threat (changes be-
tween 10 and 30 % (Master et al., 2012). It also echoes Mahon et al.
(2019) paper on boreal landbirds responses to stressors created by
multiple resource industries to identify winners and losers where sub-
stantial changes in species densities correspond to increases or decreases
>20 %. For each of the three bioclimatic subdomains, we then assessed
the percentage of sensitive individual bird species within each
assemblage.

2.5.5. Bird species core habitat size

We evaluated changes in the size of the core habitat for a given in-
dividual bird species within the three bioclimatic subdomains by
comparing core area in 2050 and 2100 under each cumulative climate
change and forest management scenario with the core area predicted at
initialization (2020). For each scenario and time step, the cumulative
impact of forest management and climate change were considered
important when the species core habitat either shrunk or expanded by
>25 % compared with the reference period for each of the three
bioclimatic subdomains. We then assessed the percentage of sensitive
individual bird species within each assemblage for each of the three
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bioclimatic subdomains.

2.5.6. Bird assemblage distribution shifts

To understand how climate change and forest management are ex-
pected to impact the distribution of specific bird species assemblages at
the subcontinental scale, we determined changes in the location of the
weighted spatial centroid of each assemblage in 2050 and 2100 under
each scenario. Bird assemblage centroids were first assessed by calcu-
lating the spatial centroid of each bird species pertaining to the given
assemblage by using the projected bird abundance and the wt.centroid
function from the package spatialEco (Evans et al., 2023) in R. Species-
specific spatial centroids were calculated under each scenario in 2020,
2050 and 2100. Then, centroids for a given assemblage were determined
by calculating the kernel of each bird assemblage from individual bird
species centroids. We used these kernels to assess assemblage’s centroids
by calculating their spatial weighted mean. We then assessed shifts of
each bird assemblage centroid by calculating the distance and the di-
rection separating centroid locations between time steps under each
scenario.

d. Specific impact of the drivers of change

The relative contribution of each driver of change, i.e., climate
change impacts on stand-level dynamic, forest management (harvesting
rate), and the increase in wildfires due to climate change, was assessed
by estimating the variance of individual bird abundance and the size of
bird core habitat specifically explained by each driver using omega-
squared values (?). In this analysis, to allow distinct assessment of its
effects on forest composition and bird assemblages, we distinguished the
stand-level effects of climate change (referred to “impacts of climate
change”), including modifications in tree growth and regeneration rates,
and induced-changes in wildfire due to climate change as a separate
disturbance factor. Analyses were completed for each bioclimatic sub-
domain separately. To do so, we ran additional forest landscape simu-
lations in which we controlled for forest management (by running
additional simulations without harvesting) and climate-induced in-
crease in fire activity (by running additional simulations keeping fire
parameters as under the baseline scenario) according to a factorial
design. Other simulations parameters were kept similar to those used for
simulations assessing the cumulative effects of forest management and
climate change). Specific bird densities were then computed for these
simulations as described above. Following a three-way factorial ANOVA,
where each driver of change was considered as a factor, we calculated »?
for each driver of change, at each time step, as in Cadieux et al. (2020):

0% = (SSutct — (Afstcs X MSerrr ) ) / (MSeror + SSut) )

where SS,.; is the sum of squares related to the driver of change (the
effect), df .., is the degree of freedom of the effect, MSeor is the mean

square of the error, and SS,,, is the total sum of squares. ANOVA and »?
calculations were performed separately for each climate scenario.

The mean »? values for a given assemblage were determined by
averaging the w? values of individual bird species within each specific
assemblage. This allowed to discern variations in the relative contribu-
tion of each driver of change among the distinct bird assemblages.

3. Results

Overall, results indicated a progressive increase over time in sensi-
tive species showing density gains in the more extreme climate scenarios
(RCP 8.5), with the proportion of sensitive species increasing in density
reaching 53 % under RCP 8.5 in 2100, compared to 46 % under the
baseline scenario. Sensitive species with density decreases also tended to
increase over time, from 17 % in the baseline scenario to 25 % under
RCP 8.5 in 2100, indicating heightened vulnerability under more
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intense climate scenarios.

The proportion of sensitive species exhibiting core habitat gains or
losses also varied with climate scenario and time. By 2100, under RCP
8.5, 18 % of sensitive species gained core habitat presence, compared to
3 % in 2050. Habitat vulnerability also increased under RCP 8.5, with
10 % of sensitive species showing significant loss of core habitat by
2100, up from 0.5 % in 2050.

Bird responses showed distinct patterns within bioclimatic sub-
domains. In the boreal fir-white birch and boreal spruce-moss biocli-
matic subdomains, both located in the boreal forest, the proportion of
species with increasing density was projected to rise by 10 % between
the baseline scenario and RCP 8.5 in 2100. In contrast, the mixedwood
bioclimatic subdomain showed stability, with little change in the pro-
portion of species exhibiting density increases across scenarios. Simi-
larly, for sensitive species experiencing density decreases, the
proportion was expected to nearly double in the boreal fir-white birch
and boreal spruce-moss subdomains between the baseline scenario and
RCP 8.5 in 2100, while remaining stable in the mixedwood subdomain.

The hierarchical cluster analysis resulted in four distinguishable
clusters, with a similar number of bird species within each assemblage
(Fig. 3). Based on vegetation inputs, we described the four clusters (bird
assemblages) as species associated with 1) boreal coniferous forests
(Fig. S3a), 2) boreal mixedwood forests (Fig. S3b), 3) thermophilous
mixedwood forests (Fig. S3c), and 4) human-temperate forests
(Fig. S3d). Spatial centroids of each species assemblage corresponded
well to the forest characteristics within which these birds were associ-
ated (Fig. S4).

Our results revealed latitudinal variations in bird species assemblage
responses, with distinct latitudinal trends in the two response variables
(i.e., changes in abundance and core habitat size). For bird abundance, it
was observed that within the mixedwood, boreal fir-white birch, and
boreal spruce-moss bioclimatic subdomains, 22 %, 33 %, and 19 % of all
individual bird species, respectively, were anticipated to experience a
large decline in abundance (>25 %) (Fig. 4). The boreal fir-white birch
subdomain had the highest number of sensitive species in each assem-
blage that are predicted to decline in abundance (Table S5). Within the
same subdomains, 41 %, 55 %, and 64 % of species, respectively, were
projected to see a large increase in abundance (Fig. 4, Table S5). A
distinct pattern emerged among bird assemblages: the assemblages
associated with human-temperate forests and with thermophilous mixed
forests had the highest percentages of species projected to experience an
increase in abundance (Fig. 4). Conversely, the assemblages of boreal
mixed and boreal coniferous species had the greatest percentage of
species projected to undergo a decrease in abundance (Fig. 4).

In terms of the size of their core habitat, 7 %, 15 %, and 8 % of bird
species in the respective subdomains (i.e., mixedwood, boreal fir-white
birch, and boreal spruce-moss bioclimatic subdomains) were projected
to lose >25 % of their core habitat, while 5 %, 25 %, and 25 % of species
within these subdomains were projected to gain >25 % in the size of
their core habitat (Fig. 4, Table S5). Fewer species exhibited sensitivity
when examining changes in the size of their core habitat compared to
changes in population abundance (Fig. 4). Notably, bird species asso-
ciated with boreal mixedwood stands were consistently identified as the
most negatively affected within all three subdomains. In contrast, bird
species associated with human-temperate forests were predicted to be
the assemblage with an important increase in the size of their core
habitat (Fig. 4).

Furthermore, 13 species associated with human-temperate forests
and 7 species associated with thermophilous mixedwood forests were
predicted to increase in abundance by 2100 under RCP 8.5 in each
bioclimatic subdomain (Table S5). Conversely, 9 species associated with
boreal forests (3 associated with boreal coniferous forests and 6 asso-
ciated with boreal mixedwood forests) were predicted to decrease in
abundance in each bioclimatic subdomain (Table S5).

Most assemblages were projected to shift to the northeast in response
to the impact of climate change and forest management on forest
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Fig. 3.. Results of hierarchical clustering. The four clusters were identified by maximizing the Silhouettes index gained by cutting the tree at different levels and the
ecological interpretability of the resulting clusters. 1) boreal coniferous forests (dark green; cluster 1), 2) human-temperate forests (red; cluster 2), 3) thermophilous
mixedwood forests (yellow; cluster 3), and 4) boreal mixedwood forests (light green; cluster 4). Height (y-axis) represents the distances between clusters.

structure and composition (Figs. 5, S5), but species associated with
human-temperate forests were predicted to shift westward (Figs. 5, S5).
However, regardless of the shift in longitude, all bird assemblages were
also projected to shift northward. Shifts were most severe under the
most aggressive climate change scenario (RCP 8.5) for birds associated
with boreal mixedwood and coniferous forests (Table S6). These bird
assemblages were projected to shift almost twice as far in 80 years under
RCP 8.5 compared to RCP 4.5 (Fig. 5). For the two other bird assem-
blages, projected range centroid shifts were rather similar between RCP
4.5 and RCP 8.5 (Fig. 5). Results showed rather large inter-specific
variations in spatial centroids within a given assemblage (Figs. S8-510).
By 2100 under RCP 8.5, climate change impacts on stand-level dy-
namics were projected to be the main drivers of changes in bird abun-
dance and core habitat size for all bird species assemblages within the
mixedwood bioclimatic subdomain (Fig. 6). Within the boreal fir-white
birch bioclimatic subdomain, both climate-induced changes in stand-
level dynamics and increases in wildfires were projected to mainly
drive bird abundance changes (Fig. 6a). The increase in wildfires was
projected to be the main driver of core habitat changes, except for the
bird assemblage associated with boreal coniferous stands, which was
mainly affected by climate-induced changes in stand-level dynamics
(Fig. 6b). In the northernmost regions, within the boreal spruce-moss
bioclimatic subdomain, abundance and core habitat size for bird spe-
cies associated with human-temperate forests, as well as the birds
associated with boreal mixed forests, were projected to be mostly
impacted by changes in wildfires (Fig. 6). Bird species associated with
thermophilous mixed stands were projected to be most impacted by both
changes in forest management and wildfires (Fig. 6). The abundance and
core habitat sizes of bird species associated with boreal coniferous
stands were projected to be most impacted by both climate-induced
changes in stand-level dynamics and the increase in wildfires (Fig. 6).
Under RCP 4.5 in 2100, the relative contribution of forest manage-
ment was generally larger than under RCP 8.5. Within the boreal fir-

white birch and the boreal spruce-moss bioclimatic subdomains, the
relative contribution of climate change was projected to be smaller
under RCP 4.5 compared with RCP 8.5. We also observed that the
relative contribution of forest management in comparison to other
sources of variation, decreased over time (Figs. S6-S7). Indeed, in 2050
under RCP 8.5, the relative contribution of forest management
explained, on average, 30 % of abundance changes (Figs. S6), compared
to 15 % by 2100 (Fig. 6a). Similarly, in 2050 under RCP 8.5, the relative
contribution of forest management explained, on average, 27 % of the
change in core habitat (Fig. S7), compared to 14 % by 2100 (Fig. 6b).
The relative contribution of changes in wildfires was predicted to remain
fairly constant over time, while the relative contribution of climate-
induced changes in stand-level dynamics was predicted to increase by
8 % on average in 2100 compared to 2050 (Figs. 6, S6-S7).

4. Discussion

This study highlights the critical interplay between climate change
and forest management in shaping future bird assemblages through
changes in suitable habitats. Through forest landscape simulations, our
study focused on the impacts of natural disturbance and forest har-
vesting on forest composition, and consequent effects on bird habitats.
We underscore the significance of the potential for forest management
practices and climate change, through the induced shifts in forest stand
composition, to shape biodiversity within Québec’s commercial forests
over the coming decades. While species distribution models for this re-
gion have focused on the potential impacts of either climate change
using a correlational approach (Bateman et al., 2020; Berteaux et al.,
2018; Stralberg et al., 2015b) or land-use changes (Betts et al., 2022) on
birds, our combined modeling approach provides a more in-depth
analysis of the interaction between climate change and forest manage-
ment effects. Importantly, our models did not directly link climate
change to bird populations but instead accounted for the delayed
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abundance, and 3 % of species may experience a reduction in their core
habitat by >25 % by 2100. Our results based on forest landscape
changes are less dramatic than those reported by Stralberg et al. (2015a,
2015b), who projected abundance declines for approximately 50 % of
boreal bird species, or Bateman et al. (2020), who predicted significant
range losses for over 90 % of boreal species. However, our study iden-
tifies a few species (Table S5), such as the Golden-crowned Kinglet
(Regulus satrapa) and the Cape May Warbler (Setophaga tigrina), that are
projected to decline in abundance by >70 % and lose approximately 50
% of their core habitat. As emphasized by Raymundo et al. (2024), a
forest landscape simulation approach allows for the identification of
climate-vulnerable species, including both currently at-risk species such
as Blackpoll Warbler (Setophaga striata) and Rusty Blackbird (Euphagus

carolinus), and common species that are not currently listed as a con-
servation concern. Furthermore, our findings emphasize the varying
degrees of vulnerability among bird assemblages. Species associated
with boreal coniferous and mixed forests were projected to be at a higher
risk of decline, particularly in the forest’s southern regions, compared to
more generalist species, better suited to the conditions of temperate or
human-altered habitats. Notably, under a scenario with mitigated
emissions (RCP 4.5), the projected changes were less severe compared to
a scenario where emissions persistently increase throughout the century
(RCP 8.5). This highlights the critical role of climate-change mitigation
for bird conservation (Bateman et al., 2020).

We found that the long-term projected effects of climate change are
likely to lead to a shift in forest structure and composition characterized
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by younger forests with an increase in deciduous cover (Boulanger and
Pascual Puigdevall, 2021; Drapeau et al., 2000; Nitschke, 2008). The
projected influence of climate change at the stand level decreased with
latitude, while the influence of wildfires, which are expected to reduce
the occurrence of old-growth stands (Bergeron et al., 2017; Boulanger
et al,, 2016; Tremblay et al., 2018), increased with latitude. The
decrease in old-growth forest is likely to be exacerbated by the legacy of
ongoing even-aged forest management, which has already shifted the
age structure of the forest towards young stands (Cyr et al., 2009;
Drapeau et al., 2009a; Mackey et al., 2023; Tremblay et al., 2018). In-
creases in the frequency of wildfires are also generally anticipated to
facilitate the establishment of pioneer deciduous species at the expense
of conifers, especially in the western part of the study area (Boulanger
and Pascual Puigdevall, 2021). In contrast with northern regions,
climate-change impacts at the stand level would be the dominant driver
of landscape and bird changes in the southern boreal mixedwood region,
through increased tree competition and mortality caused by warmer
climate and drought (Boulanger and Pascual Puigdevall, 2021). The
dominant relative contribution of wildfires on birds is consistent with
other recent predictions in western (Cadieux et al., 2020) and eastern
Canada (Tremblay et al., 2018). Our results thus suggest that birds
occurring in northern boreal forest regions are expected to be more
heavily impacted than those in southern mixedwood regions (Boulanger
and Pascual Puigdevall, 2021), due to the cumulative influence of both
direct (via increased drought and heat) and indirect (via increased
wildfire frequency) effects of climate change on the forest cover.

Our analysis revealed temporal heterogeneity in the relative contri-
butions of the different drivers on landscape compositional changes.
Specifically, the relative contribution of climate change was projected to
strengthen over time, while the relative contribution of forest manage-
ment would slightly decrease, leading to a larger influence of climate
change and an associated increase in wildfires, overshadowing the
impact of forest management by 2100. As a result, forest management is
likely to have a stronger impact in the short-term, while climate change
will likely have a stronger impact on the long term (Parmesan et al.,
2013, Labadie et al., 2024b). Therefore, forest management is playing a
crucial role in altering forest conditions up to when climate-driven shifts
in bird assemblages will occur, as forest management impacts persist
and may exacerbate the consequences of climate change. The long-term
influence of forest management on forest cover dynamics is significant
(Bergeron et al., 2006; Mackey et al., 2023). Landscapes altered by even-
aged management practices, characterized by a high ratio of young
forests at the expense of mature and old growth, have lasting impacts on
a forest’s resilience to fire (Boucher et al., 2017; Cyr et al., 2009).
Heavily harvested landscapes under climate-induced increases in fire
activity are more prone to regeneration failures (Splawinski et al., 2019)
while cumulative disturbances can exacerbate the “caducification”, i.e.,
the increase in deciduous biomass, of the boreal forest (Boulanger and
Pascual Puigdevall, 2021). With climate change projected to increase
wildfire frequency in the near term, these managed forests are increas-
ingly challenged in their ability to regenerate effectively.

Current forest management practices in Québec’s commercial forests
predominantly rely on even-aged management (Cyr et al., 2009), which
mainly include clear-cutting designed to meet industrial timber de-
mands. This sylvicultural system, while efficient for wood production,
often results in landscape homogenization and a significant reduction in
the structural complexity of forest landscapes necessary for biodiversity
(Gauthier et al., 2009; Venier et al., 2014). Furthermore, the short
rotation cycles commonly applied in managed forests fail to allow suf-
ficient recovery of older forest attributes, which are critical for main-
taining birds associated with older forests, habitat diversity and forest
resilience (Boucher et al., 2017; Drapeau et al., 2016; Gauthier et al.,
2009). Addressing these limitations would benefit from a shift towards
ecosystem-oriented management strategies that incorporate longer
rotation cycles, more retention harvesting, and mixed-species planting
(Boulanger et al., 2023; Cyr et al., 2022; Splawinski et al., 2019). These
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practices would also align with goals for carbon storage, ecosystem
services, and biodiversity conservation, thus helping to bridge current
gaps in management (Gauthier et al., 2009; Labadie et al., 2024b). While
some of these methods may already be recognized, barriers to their
widespread implementation include economic constraints, policy ri-
gidity, and a limited integration of recent scientific insights on
ecosystem dynamics into practical guidelines.

As a function of projected vegetation changes, we observed sub-
stantial latitudinal variation in the proportions of individual bird species
within each assemblage that were sensitive to the cumulative impact of
climate change and forest management. In the northern portion of the
study area, the proportion of species that was projected to increase in
abundance under RCP 8.5 by 2100 was 3.4 times higher than the pro-
portion that was anticipated to decrease. Conversely, in the southern
portion of the study area, where fewer species were projected to increase
in abundance, the proportion of increasing species was projected to be
1.9 times higher. We observed the same pattern for projected core
habitat changes. Indeed, the number of species that were projected to
increase in the boreal regions was five times higher than the number
projected to increase in the southern region, and mostly consisted of
species associated with human-temperate forests. This projected north-
ward shift in abundance is consistent with modeling results for many
North American and European regions and bird species (Barbet-Massin
et al., 2012; Berteaux et al., 2018; McCaslin and Heath, 2020). However,
our study may underestimate the changes in bird communities in the
southern regions, as the colonization of more southern species within
the mixedwood bioclimatic subdomain was not considered. Studies by
Berteaux et al. (2010, 2014) suggest a potential increase in biodiversity
across Québec within this century, as climate change may lead to pop-
ulation increases for species currently limited by cold temperatures
(Berteaux et al., 2018, 2014).

Projected concurrent changes in landscape composition and climate
combined will likely lead to asynchronous shifts in community structure
(Folke et al., 2004). While the inertia in current forests may allow some
bird species to persist, others may be more vulnerable to vegetation
changes initiated by harvest and wildfire. The nature of community
change may thus be largely dependent on future fire regimes and the
rate of forest harvesting.

The projected change in landscape composition translated into pro-
jected shifts of bird distribution centroids by approximately 0.14 to 1.16
km per year, depending on the climate scenario. This rate aligns with
studies that have estimated actual observed rates of range shift in
response to contemporary climate change (1.03 km/y La Sorte and
Thompson I11, 2007; 1.5 km/y Martins et al., 2024; 0.63 km/y Parmesan
and Yohe, 2003). However, our findings suggest a much more moderate
pace than what is suggested by correlative bioclimatic models, i.e., two
to ten times slower than the shifts reported in Bateman et al. (2016),
Chen et al. (2011) and McCaslin and Heath (2020). This discrepancy
underscores the possibility for factors beyond climate change alone to
influence shifts in abundance (Lehikoinen and Virkkala, 2016). Indeed,
climate and land-use changes act synergistically (Northrup et al., 2019),
and lags in vegetation responses are expected. Subsequently, shifts of
bird distribution will depend on the velocity of vegetation changes, and
the level of disturbance affecting bird habitats.

By including the impact of natural disturbances on forest composi-
tion, and subsequently on bird habitats, we also showed that wildfires
are expected to influence bird distribution shifts along an east-west
gradient. For one, we found that increases in wildfire may explain
northwestward shifts of bird species associated with human-temperate
forests that benefit from landscapes dominated by younger stands and
pioneer tree species. Conversely, boreal bird assemblages are likely to
seek landscapes less prone to fire, a shift that may not be explained or
predicted with bioclimatic envelope models. Understanding the nuances
of species-specific movement directions and the velocity of these
changes is crucial for accurate predictions of species distributions and
for informing conservation efforts.
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The projected increase in deciduous vegetation induced by climate
change and forest management was associated with a projected increase
in generalist species and those favoring disturbed habitats, at the
expense of disturbance-sensitive species (Betts et al., 2022; Nitschke,
2008). Accordingly, our results highlight that bird species composition
within Québec is projected to shift towards species associated with
human-temperate forests and thermophilous mixed forests at the
expense of birds associated with boreal forests. Across bioclimatic do-
mains, 12 boreal mixedwood forest species (i.e., 80 % of the 15 species
within this assemblage) were predicted to be sensitive under the most
severe anthropogenic climate change. These findings align with prior
studies on the cumulative effects of land-use change and wildfire (Regos
et al., 2018), as well as insights from Drapeau et al. (2016). In contrast,
48 % of bird species associated with human-temperate forests were
anticipated to increase in abundance by >25 % within the three
bioclimatic subdomains. Given the different rates of change across as-
semblages, there is a possibility for novel species communities to form,
revealing previously unobserved species interactions. These new in-
teractions could influence population dynamics in unforeseen ways,
potentially leading to localized extinctions if species cannot rapidly
adapt to the changing patterns of co-occurrence (Stralberg et al., 2009).

5. Limitations

It is important to acknowledge several factors that were not fully
considered in the study. Firstly, we did not explicitly account for the
potential impacts of forest fragmentation and spatial habitat patterns on
habitat quality. While our research demonstrated significant changes in
forest composition by 2050, particularly in response to forest manage-
ment practices, the subsequent alterations in forest structure, which
often result in increased fragmentation, were not comprehensively
addressed (Villard and Metzger, 2014). However, we did include
landscape-scale forest composition in our models, which Drapeau et al.
(2000) found to have a more important influence on bird community
composition varied than landscape structure. Furthermore, we did not
include climate directly in our bird models, but rather focused on
changes in bird habitat. Thus, we did not investigate the complexities of
thermal tolerance, prey availability, or other effects of climate not
directly related to forest composition and structure. Also, we did not
consider the impact of climate change and forest management on species
interactions, and changes in predation and competition linked with the
potential arrival of new species from the south. Lastly, for boreal species,
our simulations did not extend beyond the northern limit for forest
management activities, which may constrain the projected shifts in
species centroids and potentially underrepresent the full extent of their
northward movement.

6. Conclusion

Our study underscores the need for further research into the complex
interplay between climate change, land use, and biodiversity in boreal
ecosystems. Ultimately, our findings provide a valuable foundation for
the development of effective conservation strategies in boreal forest
ecosystems, ensuring the preservation of avian diversity during rapid
environmental transformations. Future studies should aim to refine our
understanding of how adaptive conservation strategies and specific
forest management practices can mitigate the adverse effects of climate
change on birds. For example, mitigation efforts could be coupled with
selective logging and conservation of climate-change refugia, especially
in the boreal zones that are predicted to experience intensifying pressure
from forest harvesting and the increase in wildfires. A nuanced approach
to forest management, recognizing its potential both as a threat and as a
tool for conservation, is vital for informing policy decisions and man-
agement practices aimed at maintaining the boreal forest’s resilience in
the face of climate change.
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