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ABSTRACT

Surface mining in the Athabasca Oil Sands Region (AOSR) of western Canada disrupts natural landscapes and permanently
alters their hydrological functions. Wetlands cover ~55% of the region, primarily fen peatlands, and although provincial regu-
lations require companies to restore disturbed ecosystems to a functional state, fens remain difficult to construct due to their
complex hydrology and dependence on water exchange with surrounding uplands. Evapotranspiration (ET), a key component of
the water balance, is particularly important in the sub-humid AOSR, where increasing reclamation activity demands accurate
quantification of vertical water loss, as it influences ecohydrological feedbacks and long-term wetland sustainability. This study
evaluates ET and energy dynamics in a constructed fen, built atop ~80m deposit of composite tailings and capped with 10m of
tailings sand, using eddy covariance (EC) measurements and vegetation surveys conducted across five non-consecutive years be-
tween 2015 and 2023. Mean ET from April 1 to October 31 was 250 +£49.9 mm, aligning with values from natural and constructed
boreal peatlands. On average, ET was 15% higher in warmer and drier years. While intra-annual ET variability was mainly in-
fluenced by vapour pressure deficit and net radiation, a long-term decline in ET coincided with Typha latifolia expansion, whose
canopy reduced water loss by sheltering the open water. Flux partitioning revealed that transpiration exceeded evaporation by
up to 70%, highlighting the role of Typha in reducing energy input and limiting turbulent mixing over the ponded water surface.
Despite declining ET, latent heat flux remained the dominant component of the energy balance, suggesting functional similarity
to natural fens. With rainfall exceeding ET in 80% of the years, the study site did not experience any prolonged drought periods.
These findings enhance understanding of surface-atmosphere interactions and inform wetland reclamation strategies, particu-
larly the role of vegetation change.

surface-mineable, and approximately 1055 km? is already dis-
turbed, significantly altering the hydrological functions of

1 | Introduction

Boreal wetlands are critical ecosystems that play a vital role
in carbon sequestration, greenhouse gas regulation, water
management, and pollutant filtration and retention (Webster
et al. 2015). In the Athabasca Oil Sands Region of Alberta,
which spans approximately 90000km?2, ~4750km? is deemed

surrounding wetlands (Volik et al. 2020; Popovi¢ et al. 2025).
Provincial legislation under the Environmental Protection
and Enhancement Act mandates that mining companies re-
store disturbed sites to an equivalent land capability similar
to pre-disturbance conditions. However, due to differences
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between mine materials and natural substrates, reconstructed
landscapes physically differ from their original state, often
resulting in hybrid or novel ecosystems (Nwaishi et al. 2015;
AEP 2018).

The undisturbed landscape of the AOSR consists of a mosaic
of boreal forests (~25%) and wetlands (~55%), with fen peat-
lands comprising the largest portion (Rooney et al. 2012; Volik
et al. 2020). While past research has largely focused on forest
reestablishment (Carey 2008; Macdonald et al. 2012; Huang
et al. 2015; Strilesky et al. 2017; Amaro Medina and Carey 2024),
recent efforts have shifted toward peatland construction due
to the critical ecological functions of these ecosystems (Daly
et al. 2012; Wytrykush et al. 2012; Ketcheson et al. 2016, 2017;
Nicholls et al. 2016; Scarlett et al. 2017; Biagi et al. 2021; Clark
et al. 2022; Popovi¢ et al. 2022, 2023). Fen construction is par-
ticularly challenging due to the complex hydrology, geomor-
phology, and extended timescales required for natural peatland
formation. Nonetheless, successful peatland reestablishment is
feasible if the constructed ecosystem meets the necessary geo-
logical and hydrological conditions (Devito et al. 2012; Oswald
and Carey 2016).

The success of reclamation efforts depends on reestablish-
ing hydrologically connected landscapes (i.e., hydrologic
units), particularly for peatlands, which require consistent
water availability (Devito et al. 2012). This is challenging in
the sub-humid AOSR, where annual precipitation is typically
lower than evapotranspiration (ET), leading to frequent water
deficits (Brown et al. 2010; Popovi¢ et al. 2022). Apart from
their ecological functions, wetlands play a crucial role in con-
structed landscapes due to their hydrological connectivity
with surrounding uplands, which is essential for distributing
water to downstream fluvial systems. This two-way wetland-
upland interaction is particularly important for sustaining
surface-groundwater exchange and maintaining the hydro-
logical integrity of the landscape (Volik et al. 2024). Therefore,
understanding the environmental and climatic controls on
the hydrology of constructed peatlands is crucial for ensuring
their long-term sustainability and developing suitable water
management strategies. Despite projections of approximately
a 10% increase in total precipitation by 2050 in the AOSR,
air temperature is expected to rise more substantially (3.3°C,
CMIP6-SSP3-7.0; ClimateData.ca 2025). This warming may
lead to drier conditions and reduced water availability (Ireson
et al. 2015; Thompson et al. 2017), highlighting the need for
long-term assessments of ecosystem function and response to
environmental change.

ET is a key component of the regional water balance and
understanding the biotic and abiotic factors that control its
variability is critical for refining reclamation strategies and
minimising water losses in constructed peatlands. Previous
studies in the AOSR have examined short-term (~3years)
changes in constructed fens' hydrology and hydrochemis-
try (Nicholls et al. 2016; Oswald and Carey 2016; Spennato
et al. 2018; Biagi et al. 2019; Biagi and Carey 2020), vegetation
dynamics (Scarlett et al. 2017; Vitt et al. 2020), and carbon
cycling (Clark et al. 2019). However, long-term investigations
of surface-atmosphere exchanges in reclaimed peatlands re-
main limited, with only a few recent studies encapsulating

surface energy fluxes behaviour in these ecosystems (Popovi¢
et al. 2023, 2025).

Research on boreal peatlands indicates that ET is influenced
primarily by climate conditions, vegetation cover, and water
table fluctuations (Wu et al. 2010; Moore et al. 2013; Runkle
et al. 2014; Helbig et al. 2020; Biagi et al. 2021). However, the re-
lationship between water table depth and ET remains uncertain
due to weak correlations observed in some peatland ecosystems
(Lafleur et al. 2005; Faubert and Carey 2014). Among climatic
drivers, vapour pressure deficit and net radiation are consid-
ered dominant, with the latter typically exerting a stronger
influence on ET rates (Petrone et al. 2007; Nicholls et al. 2016;
Volik, Kessel, et al. 2021). In the AOSR, research on wetland
ET has primarily focused on native fen vegetation (e.g., Scarlett
et al. 2017). Specifically, most studies examined changes in plant
communities solely in relation to salinity and sodium concentra-
tion effects (Vitt et al. 2016, 2020; House et al. 2022). However,
less attention has been given to emergent aquatic species un-
common in fens, such as Typha latifolia, whose effects on mi-
croclimate and ET remain poorly understood. Most research on
Typha was conducted in marshes (Goulden et al. 2007) or within
broader restoration studies (Bourgeois et al. 2012; Graham
et al. 2022). While some studies acknowledge Typha's adaptabil-
ity to constructed peatlands (Mollard et al. 2013), concerns per-
sist regarding its potential to inhibit peat formation and reduce
plant diversity, thereby impeding reclamation success (Popovic¢
et al. 2023).

Given the complexity and heterogeneity of peatlands, iden-
tifying the vegetation controls on ET is a challenging task. A
valuable approach to addressing this challenge is partitioning
ET into its components—evaporation (E) and transpiration (7).
Accurate ET partitioning enhances the understanding of water
and energy exchanges between the ecosystem and atmosphere
(Xu et al. 2021), which is essential for developing effective strat-
egies to maintain water availability critical for peatland func-
tionality. While ET partitioning studies have been conducted in
forests, shrublands, and grasslands (Hu et al. 2009; Cavanaugh
et al. 2011; Paul-Limoges et al. 2020), research specifically
quantifying evaporation and transpiration in peatlands remains
scarce.

Considering the critical role of ET in the boreal water budget
and the widespread presence of Typha in reconstructed peat-
lands, this study aims to evaluate ET responses to environmen-
tal variations in a reclaimed fen over five non-consecutive years
(2015, 2017, 2019, 2021, and 2023) within a 10-year period. We
hypothesise that both intraseasonal and interannual variability
in climate conditions, along with changes in vegetation cover in
the constructed fen, contribute to variations in ET rates, lead-
ing to measurable differences over the observation period. To
test this hypothesis, we use the eddy covariance (EC) technique
and vegetation survey data to address the following key objec-
tives: (1) identify the primary environmental factors regulating
growing season ET and its components in the fen ecosystem;
(2) assess inter-annual ET variability in response to shifts in
dominant plant communities and regional climate conditions;
and (3) evaluate the hydrological function of the study fen rel-
ative to natural and reconstructed ecosystems. These insights
are essential for assessing the effectiveness of current peatland
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FIGURE1 | Map of Canada with the location of the AOSR (top left); Fort McMurray and surrounding mining sites (right-orange square indicates
the location of the study area); East-in-Pit and Sandhill Fen Watershed location (bottom left); view of Sandhill Fen (bottom right).

reclamation practices and ensuring the long-term sustainability
of these ecosystems.

2 | Materials and Methods
2.1 | Study Area

The study site, Sandhill Fen, is one of two pilot projects estab-
lished to monitor the development of peatland ecosystems in the
post-mining landscape of the Athabasca Oil Sands Region and is
located approximately 40km north of Fort McMurray in north-
eastern Alberta, Canada (Figure 1). It is a constructed fen within
the Sandhill Fen Watershed (SFW), situated in the northwestern
corner of Mildred Lake Mine, within the East-In-Pit (EIP) soft
tailings deposit, covering an area of 0.52km?. EIP was mined be-
tween 1977 and 1999 (Wytrykush et al. 2012). The mined-out pit
was then infilled with a 60-100m layer of pure tailings sand (the
residual sand left after bitumen is extracted from the oil sands
ore) and composite tailings (a mixture of fluid fine tailings and
sand tailings) between 1999 and 2008. The SFW was constructed
over 4years (2009-2012) on top of the filled pit and a 10m sand

structural cap, which was engineered to form the topography
of the newly constructed watershed (Clark et al. 2019). The pri-
mary design elements of the Sandhill Fen Watershed encompass
constructed upland hills (i.e., hummocks), vegetated swales, a
fen wetland, a freshwater storage pond, an under-drain system
for the fen, and two perched fen wetlands (Figure 2). The main
function of the hummocks is to provide water to the lowlands
and minimise the salinization of vegetation roots. The primary
water sources for SFW are precipitation inputs and groundwater
recharge, while fen outflows are controlled by pumping oper-
ations (Nicholls et al. 2016; Biagi et al. 2021). The pumps were
initially intended to maintain wetness and control salinity to
support vegetation growth in the developing ecosystem (Biagi
et al. 2019). Currently, with inflow halted, they are primarily
used to regulate outflow and prevent water stagnation and ex-
cessively high water levels in the fen.

2.2 | SFW Instrumentation Network

Sandhill Fen Watershed is one of the most extensively studied rec-
lamation projects in the AOSR and has a large instrumentation
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FIGURE2 | Instrumentation network of the SFW; lowlands are represented in light green and uplands—in yellow.

network (Figure 2). To collect data on climate parameters, three
meteorological towers were installed across the SFW to measure
air temperature, wind speed, and direction, relative humidity,
as well as shortwave and longwave radiation (Biagi et al. 2021).
In addition, there is an EC tower located on Boardwalk 3 near
the center of the wetland. The tower is equipped with a three-
dimensional sonic anemometer (Campbell Scientific, model
CSAT-3) measuring wind speed and direction, an enclosed path
infrared gas analyser (LI-COR Biosciences, model LI-7200) mea-
suring H,O and CO, mixing ratios, and a CNR4 net radiometer.
The instrumentation is mounted 2.9m above the fen's surface.
Further details on SFW's well network and other monitoring
equipment can be found in Biagi et al. (2021).

2.3 | Data Collection and Processing
2.3.1 | EC and Micrometeorology

Half-hourly fluxes were calculated using EddyPro software
(v7.0.9, LI-COR Inc., USA) and processed following standard
procedures for EC data (Vickers and Mahrt 1997; Moncrieff
et al. 2005; Mauder et al. 2013). Latent (LE) and sensible (H) heat
fluxes were gap-filled using an Artificial Neural Network (ANN)
algorithm, as described by Clark et al. (2019). Environmental
variables that influence these fluxes—air temperature (T,), net
radiation (R,), vapour pressure deficit (VPD), and wind speed
(U), along with seasonal dummy vectors (sine and cosine)—
were selected as inputs to the ANN due to their reliable data
availability (99.6%-99.9%). Both observed and gap-filled data
are shown in Figure S1.

In this study, T, and VPD were averaged from the three
Syncrude weather stations located on the SFW hummocks
(labelled as Meteo Station in Figure 2). Net radiation and heat
fluxes were converted from watts per square meter (Wm™2)
to megajoules per square meter per day (MIm~2 d~!) to enable

compatibility with subsequent analyses conducted at a daily
temporal resolution.

2.3.2 | Surface-Atmosphere Interaction Parameters

Surface-atmosphere interaction parameters were derived from
half-hourly flux data and included aerodynamic conductance
(g,)> surface conductance (g), and the decoupling factor (Q).

Aerodynamic conductance represents the efficiency of an eco-
system in transferring latent and sensible heat to the atmosphere
through turbulent mixing (Peichl et al. 2013). It was calculated
as the inverse of aerodynamic resistance and converted from m
s7! to mms~! (Humphreys et al. 2006; see SI, Equation S1).

Surface conductance, expressed in m s™' and converted to
mms~}, regulates the transfer of water vapour from the land sur-
face to the atmosphere, including through plant stomata, soil,
and wet surfaces (Schulze et al. 1995), and derived by rearrang-
ing the Penman-Monteith equation (Helbig et al. 2020; see SI,
Equation S2).

To evaluate the degree of interaction between the atmosphere
and fen vegetation, we estimated a vegetation-atmosphere decou-
pling factor (Jarvis and McNaughton 1986; see SI, Equation S3).
An Q value near 0 indicates a well-coupled ecosystem, where
ET is primarily regulated by stomatal control over transpiration
and influenced by VPD. In contrast, when Q approaches 1, the
system is uncoupled, and ET is predominantly determined by
the amount of available energy (Popovic et al. 2023).

2.3.3 | Actual and Reference ET

Actual evapotranspiration (ET,) was derived from the latent
heat flux using the following expression (Allen et al. 1998):
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where LE is the latent heat flux (Wm™2), D is the time con-
version factor (3600 for hourly time steps and 86400 for daily
time steps), p,, is the water density (997kgm™3), and L, is the

latent heat of vaporisation (Jkg™') expressed as (Harder and
Pomeroy 2013):

L, = 1000+ (2501 — 2.36T,) ©)

The reference evapotranspiration rate (ET,), expressed in mil-
limetres per day (mm d=!), was calculated using the Penman-
Monteith combination equation as recommended by the Food
and Agriculture Organisation of the United Nations (Allen
et al. 1998):

0.4085(R, — G) +y 7oty (e — €, )
ET, = : ®3)
s+y(1+0.34u,)

where s is the change in saturation pressure with temperature
(kPa°C™), R is the net radiation flux (MIm=2d™), G is the
ground heat flux (MIm=2d"), y is the psychrometric constant
(kPa°C™), T, is the air temperature (°C), u, is the wind speed
at 2m above the ground (ms™), e, is the saturated vapour pres-
sure (kPa), e, is the actual vapour pressure (kPa). For daily cal-
culations, G was assumed to be zero (Gavilan et al. 2007), and
u, was estimated by adjusting the actual measured wind speed
at the observation tower using the following equation (Zotarelli
et al. 2010):

w—u 4.87 4
27 " n(67.8h — 5.42) @

where u_ is the measured wind speed z m above the ground sur-
face (ms™') and h is the measurement height (m).

2.3.4 | ET Partitioning

To partition ET into its components, evaporation (E) and plant
transpiration (T), we used an open-source Python algorithm de-
veloped by Zahn and Bou-Zeid (2024). Of the five partitioning
methods, the conditional EC (CEC) method was most applicable
for this study due to its established reliability (Gao et al. 2023;
Wang et al. 2024), independence from supplementary data (e.g.,
water-use efficiency, gross primary production), and ability to
directly partition fluxes using continuous high-frequency EC
measurements (Zahn et al. 2022, 2024).

CEC is based on the assumed similarity between water va-
pour and carbon dioxide fluxes, with key assumptions includ-
ing (Zahn and Bou-Zeid 2024): (1) The EC system height (z;.)
should be close to the mean canopy height (z.) (ideally, z;./z,
< 3) to capture both soil and vegetation fluxes accurately; (2)
soil (evaporation, respiration) and vegetation (transpiration,
photosynthesis) fluxes must be non-negligible; and (3) the cor-
relation or anticorrelation between water vapour and carbon
dioxide fluxes should not be perfect. Further details on the
CEC method can be found in the SI (Section S2) and Zahn
et al. (2022).

To satisfy one of the open-source algorithm requirements
(T,>0) and to capture peak vegetation activity at the fen, we
limited our analysis of high-frequency EC data to the grow-
ing season (June 1-August 31). This period was selected to
assess the influence of environmental factors and vegetation
shifts on summer ET, E, and T. Data processing followed the
protocol outlined in the open-source script, with half-hourly
estimates of E and T components (Wm~™2) aggregated to a
daily timescale (mm d~1), yielding 92 observations per year.
To account for intra-daily variability, both daytime and night-
time fluxes were included, with nighttime defined as periods
when downwelling shortwave radiation (Rg,,) was less than
10Wm~2.

2.3.5 | Vegetation Conditions

Our study examined the distribution and temporal shifts of key
dominant species within the Sandhill Fen, specifically Typha
latifolia (broad-leaved cattail) and Carex aquatilis (water
sedge). The data were obtained from House et al. (2022), who
conducted systematic repeated vegetation surveys using a
grid of approximately 90 permanent plots in 2015, 2017, 2019,
and 2021.

In the 16 plots closest to the tower, the abundance of Typha lat-
ifolia increased from 19% in 2015 to 63% in 2021, notably ex-
panding into areas previously dominated by Carex (Table 3 and
Figure 3). Conversely, the abundance of Carex aquatilis declined
in the central parts of the fen, decreasing from 32% in 2015 to
13% in 2021; it was displaced toward the fen's periphery (Table 3
and Figure 4).

Further details on the potential drivers of the shifts in dominant
vegetation species, the abundance of other plant species, and as-
sociated changes in water chemistry within the fen are available
in House et al. (2022).

2.4 | Data Analysis

For the analysis, we selected data from April 1 to October 31
(hereafter referred to as the ‘study period”) for each odd year be-
tween 2015 and 2023. Specifically, the years 2015, 2017, 2019 and
2021 were chosen due to the availability of dominant plant spe-
cies data from vegetation surveys conducted in the SFW during
those periods (Figures 3 and 4). The year 2023 was included as
an additional year of observation to assess ongoing changes in
the fen ecosystem over time.

To address discrepancies in measurement intervals among
variables, all data were standardised to a daily scale and ex-
tracted for the study period, resulting in 214 observation points
per year. Additionally, the study periods were categorised
based on deviations from the 30-year climate normal for Fort
McMurray Airport. The categories include ‘warm’ and ‘cool’
for temperature conditions and ‘dry’ and ‘wet’ for precipitation
conditions. Warm and cool periods were defined by air tempera-
tures exceeding the 75th percentile and falling below the 25th
percentile, respectively. Similarly, wet and dry periods were de-
termined by total precipitation outside these quartile thresholds.
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FIGURE 3 | Changes in Typha latifolia abundance (% of cover) in Sandhill Fen between 2015 and 2021.
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TABLE 1 | Study periods (April 1-October 31) for each year
categorised based on temperature and precipitation conditions.

Climate
conditions 2015 2017 2019 2021 2023

Warm X X X
Cool X

Dry X X X

Wet X

FIGURE 5 | 80% flux footprint for the EC tower between 2015 and
2021.

Among the five observed years, 2015 and 2017 were classified as
warm and dry, while 2019 exhibited notably cool, wet conditions
(Table 1). In 2021, dry conditions prevailed, though tempera-
tures remained within the normal range. By contrast, 2023 was
characterised by warm temperatures and normal precipitation
conditions.

To compare environmental conditions across the study years,
only midday values (11:00-15:00) were used for surface-
atmosphere interaction parameters (i.e., g,, g, and Q). For en-
ergy fluxes, vapour pressure deficit, ET, and water table depth,
daily data were used. The significance of intraseasonal and
inter-annual changes in environmental variables was evalu-
ated using the Kruskal-Wallis (KW) nonparametric statistical
test (Kruskal and Wallis 1952), which was selected due to the
violation of normality and homogeneity of variance assump-
tions in most of the data. For pairwise comparisons between
individual months, we applied the Wilcoxon rank sum test,
which evaluates differences based on magnitude-based ranks
(Haynes 2013). These analyses were conducted in MATLAB
R2024a using kruskalwallis and ranksum functions, respec-
tively (MathWorks Inc.).

To assess changes in flux distances over time, we applied the
footprint analysis method by Kljun et al. (2015). The mea-
sured fluxes were constrained within 80% of the study site
boundaries (Figure 5). A progressive reduction in the flux
footprint was observed, attributed to active vegetation growth,
increased surface roughness, and a subsequent decrease in
fetch. In 2015, the plots in the 80% footprint had a mean Typha
coverage of 29%; but that increased in 2017 (39%), 2019 (50%),
and again in 2021 (87%).

To evaluate the influence of environmental variables on the
variability of ET in the Sandhill Fen, we employed the relative
weight analysis (RWA) technique. RWA is a statistical method
designed to quantify the relative contributions of predictor vari-
ables in a multiple regression model to the total coefficient of
determination (R?). This approach is particularly advantageous
for addressing issues of multicollinearity among predictors
(Tonidandel and LeBreton 2010).

In essence, RWA transforms the original predictors into a new
set of orthogonal (uncorrelated) variables through principal
component analysis. The dependent variable is then regressed
on these orthogonal predictors. Subsequently, the resulting re-
gression weights are transformed back to the scale of the orig-
inal correlated predictors to estimate their contributions. The
final step involves quantifying each predictor's contribution to
the total R? by integrating transformed regression weights with
their correlations to the dependent variable (Johnson 2000). For
clarity, we expressed individual contributions as relative impor-
tance percentages in our analysis.

To ensure consistency between ET and its components (E and
T), relative weight analysis was performed exclusively for the
growing season (June 1-August 31), consistent with the period
used for E and T partitioning. For this analysis, we selected
seven environmental variables: air temperature, net radiation,
vapour pressure deficit, the combined effect of VPD and wind
speed (VPD X U), aerodynamic conductance, surface conduc-
tance, and water table depth. The analysis was conducted using
measured (non-gap-filled) flux data.

Of note, while RWA is robust to multicollinearity, it does not
explicitly address the key assumptions underlying linear re-
gression, such as linearity, independence of errors, constant
variance of errors, normality of residuals, and the absence of
omitted variable bias. To address these assumptions and sup-
port the RWA results, we conducted an ordinary least squares
(OLS) regression. However, it offered no additional insights or
limitations beyond those identified by RWA and is included in
the SI (Table S4).

3 | Results

3.1 | Microclimate

3.1.1 | Atmospheric Conditions

Across the five study periods, mean air temperature (T,) was

12.4°C+1.0°C (1 SD) (Table 2), approximately 1.5°C higher
than the 1991-2020 climate normal for the same months at
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TABLE 2 | Seasonal averages of environmental and energy flux variables, and total precipitation for the study period (April 1-October 31).

Variable Units 2015 2017 2019 2021 2023 5-year average
T, °C 12.5 12.5 11.0 12.3 13.7 12.4
P, mm 205 265 361 235 355 284
VPD kPa 0.69 0.68 0.55 0.69 0.69 0.66
Ry, MJIm—2d-! 16.8 15.9 14.9 15.5 15.1 15.6
Rn MJm=—2d-! 9.15 8.80 8.22 9.20 8.18 8.71
LE MJm=—2d-! 3.81 2.82 2.34 2.47 2.87 2.86
H MIm—2d! 0.79 1.10 1.73 1.27 1.22 1.22
WT masl 313.10 313.19 313.19 313.21 313.12 313.16
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FIGURE 6 | Daily (April 1-October 31) air temperature (A) and precipitation (B) for the Mildred Lake Weather Station, and vapour pressure defi-

cit (C) for the SFW.

Fort McMurray Airport (10.4°C). The warmest year was 2023
(13.7°C), while the coolest was 2019 (11.0°C; Figure 6A).
Average growing season precipitation (P,,) was 284 71 mm,
about 15% lower than the 30-year climate normal (330 mm).
Wetter years (2019 and 2023) exceeded the climate normal,
with 2019 receiving 361 mm, whereas drier years (2015, 2017,
and 2021) recorded less than 270 mm, with 2015 being the
driest (205 mm). Vapour pressure deficit (VPD) was relatively
stable across the years, though elevated VPD occurred during

summer in dry years and in late spring (April-May) during
wetter years (Figure 6C).

3.1.2 | Water Table Dynamics
During the warm-dry years (2015 and 2017), the water table

(WT) followed similar seasonal patterns—higher in spring,
then gradually declining over the summer (Figure 7). In 2017,

8 0of 19

Hydrological Processes, 2025

85Us01 7 SUOWILLIOD BAIERID 3ol dde 8y} Aq pausenoh a1e S3jo e YO ‘8SN JO SaINJ 10} AReiq 1 8UIIUO A8]IM UO (SUORIPUOD-PLE-SWLBH O™ A8 | 1M ARe.q)1 U1 |UO//'SaRY) SUORIPUOD PUe SWie | 84} 83S *[5202/2T/T0] Uo ARiqiTauliuo AB|IM ‘202 dAu/200T 0T/10p/wo0 Ao 1M Aelq1jeul|uo//Sdny wol pepeojumod ‘8 ‘520z ‘S80T660T



313.75
% 3135
@
£
Y
231325
'_
= 413
312.75

100 150 200 250 300100 150 200
DOY DOY

250

300100

150 200 250 300100 150 200 250 300100 150 200 250 300
DOY DOY DOY

FIGURE 7 | Average daily (April 1-October 31) water table at Sandhill Fen. Vertical red lines indicate pumping events. The horizontal blue line

represents the water level at the tower (313.12 masl).
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FIGURE 8 | Monthly box plots of daily (April 1-October 31) downwelling shortwave radiation (A), net radiation (B), latent (C), and sensible (D)

heat fluxes.

the average WT was 0.09 m higher than in 2015 (Table 2). Sharp remained generally higher. In contrast, cool-wet 2019 displayed
WT drops around DOY 160 (2015) and DOY 190 (2017) were a distinct pattern, with an early spring drop of —0.20m (due to
linked to fen pumping activities (Biagi et al. 2021). Dry 2021 pumping), followed by a summer rise (DOY 152-243) driven
also showed declining WT, though levels stabilised earlier and by substantial rainfall (Figure 6B) and reduced evaporative
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demand (Figure 8C), before another pumping event around
DOY 234. Warm 2023 showed a similar pattern but with less
seasonal WT variability.

3.2 | Surface Energy Fluxes

Warmer and drier years (2015, 2017, and 2021) had greater
downwelling shortwave radiation (Rg,,), reflecting clearer
skies and increased energy input. Across all years, Rq,, typ-
ically peaked in May and June. A Kruskal-Wallis test indi-
cated significant variations in Ry, during April and August
(KW, p=0.006; Figure 8A). Net radiation (R,) also had lim-
ited inter-annual variability, with the greatest intraseasonal
differences occurring in October (KW, p <0.001). The highest
seasonal R, values were recorded during the warm and dry
periods of 2015 and 2021, while 2023 had the lowest seasonal
mean (Table 2).

Turbulent heat fluxes (LE and H) exhibited notable variability
throughout the study period, particularly at the intraseasonal
scale. Across the Syears, latent heat flux (LE) exhibited the

greatest inter-annual variability during June and August (KW,
p<0.001), with peak monthly values generally occurring in July
(Figure 8C). The post hoc analysis identified 2015 as significantly
different from other years, consistent with the highest seasonal
mean LE of 3.81 MIm~2d~!, which corresponded to increased
R, and elevated VPD (Table 2). In contrast, sensible heat flux
(H) exhibited its greatest variability in July (KW, p <0.001), with
marked differences between 2015 and 2019 (Figure 8D). After
2019, LE increased, reaching a higher seasonal value in 2023
due to warmer temperatures and elevated VPD. Meanwhile, H
experienced a gradual decline, reaching 1.22MJm~2d~! in 2023
(Table 2).

Monthly LE and H fractions of R (LE/R_ and H/R,) across the
study periods showed that LE was the dominant contributor to
the fen's energy budget during the growing season, reaching
0.50-0.75, and was lower (<0.40) during the shoulder seasons
(Table S2). In contrast, H contributions were generally lower
in summer (<0.35) but higher in spring and fall (0.20-0.50;
Table S3). Notably, spring 2015 was an exception, with signif-
icant LE contributions even in April-May, while H played a
lesser role in the energy balance during that period.
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FIGURE9 | Monthly box plots of daily midday (April 1-October 31) aerodynamic (A) and surface (B) conductance.

TABLE 3 | Seasonal averages (and totals) of ET, surface-atmosphere interaction terms, and vegetation cover during the study period (April 1-

October 31).
Variable Units 2015 2017 2019 2021 2023
ET, mmd~! (mm) 1.55(331) 1.15 (246) 0.95 (204) 1.01 (216) 1.17 (250)
ET, mmd~! (mm) 3.12 (668) 2.92 (625) 2.56 (523) 2.98 (637) 2.73 (584)
84 mday mms~! 30.3 36.5 339 335 37.6
& mday mms~! 4.64 3.04 4.09 2.86 3.72
Q — 0.32 0.21 0.24 0.20 0.23
Typha cover % 19 28 36 63 —
Carex cover % 32 27 19 13 —
10 of 19 Hydrological Processes, 2025
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FIGURE 10 | Violin plots of daily (April 1-October 31) reference (ET, ) and actual (ET,) evapotranspiration (A); average monthly ET, at SFW be-

tween 2015 and 2023 (B).

TABLE 4 | Seasonal average ET,/ET, ratios for the study period
(April 1-October 31).

Variable 2015 2017 2019 2021 2023

ET,/ET, 0.46 0.32 0.35 0.34 0.43

3.3 | Dynamics of Surface-Atmosphere
Interactions

Aerodynamic conductance (g,) exhibited distinct intraseasonal
variability during fen ecosystem establishment, with the great-
est fluctuations occurring during the shoulder season months,
particularly May and September (KW, p<0.001; Figure 9A).
Post hoc analysis indicated that in spring (April-May), 2015 was
the most distinct from the other years, while September 2021
also showed significant differences. These variations during
the shoulder seasons are likely linked to dormant vegetation in
spring and the onset of senescence in fall. The highest mean g,
was recorded in 2023 (37.6 mms™), reflecting the rapid growth
of Typha latifolia.

Surface conductance (g, displayed greater intraseasonal vari-
ability than g,, with statistically significant differences across
all months. Variability was highest during the summer months
(June-August; KW, p<0.001), with peak monthly means in
July (Table S1), coinciding with maximum vegetation growth
(Figure 9B). Declines in seasonal g, were observed during drier
years, although this was not the case in 2015, possibly due to
elevated LE and the dominance of Carex near the EC tower
(Table 3). In contrast, elevated g was associated with wetter
conditions and ample water availability, despite decreased LE
and VPD (e.g., in 2019).

Throughout the study, the fen exhibited an intermediate de-
gree of coupling with the atmosphere, with mean seasonal
decoupling coefficient () values ranging from 0.20 (2021)

to 0.32 (2015). The highest Q values were observed in July
(Q,,,,=0.41 in July 2015; Table S1), coinciding with elevated
g,in 2015, 2017, and 2023, while lower values occurred during
the shoulder seasons (Figure S2) when g  declined. The peak
Q suggests that ET was predominantly controlled by VPD
and surface characteristics (i.e., g, and g). This is further
supported by the stronger influence of VPD on summer ET at
SFW compared to R (Figure 12).

3.4 | ET Dynamics

Both reference and actual evapotranspiration (ET, and ET,)
exhibited notable inter-annual variability. ET, showed greater
fluctuations (KW, p<0.001; Figure 10A), primarily driven by
significant differences between mean ET, values in 2015 and
the subsequent 4years, as indicated by post hoc analysis. The
5-year average total ET, was 249+49.9mm, with the highest
rate of 331 mm observed during the driest 2015, and the lowest
at 204 mm in the cool and wet 2019. In contrast, changes in ET
were less pronounced (KW, p=0.02; Figure 10A), with the larg-
est differences observed between 2015 and 2019.

ET, declined by approximately 40% between 2015 and 2019,
while ET, decreased by around 20% over the same period. After
2019, ET, increased in 2021, though not significantly (Wilcoxon,
p=0.06), and showed no notable change afterward (p =0.28). In
contrast, ET, increased significantly by about 20% between 2019
and 2023 (Wilcoxon, p=0.01).

Intra-seasonal ET variations varied across the study years.
The greatest variability in both ET, and ET_ occurred in dry
years (2015 and 2021). The median ET, in 2015 was 1.45mm
d-!, with an interquartile range (IQR) of 0.64-2.35mm d~},
while the median ET, in 2021 was 2.76 mm d~!, with an IQR of
1.33-4.28 mmd~!. Conversely, 2019 exhibited the lowest vari-
ability, with a median ET, of 0.75mmd~" (IQR: 0.36-1.37 mm
d™')and a median ET_of 2.22mm d~! (IQR: 1.36-3.59 mmd "),
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TABLE 5 | Seasonal averages (and totals) of E and T for the growing season (GS) and the month of July.

Variable Units 2015 2017 2021 2023
Egq mmad-! (mm) 0.50 (46.3) 0.38 (34.6) 0.35 (31.9) 0.30 (27.7)
By, 0.44 (13.8) 0.43 (13.4) 0.31 (9.75) 0.66 (11.2)
T 1.50 (138) 1.12 (101) 1.00 (92.2) 1.04 (95.4)
Thuy 1.40 (43.5) 1.30 (40.3) 1.12 (34.7) 1.35 (42.0)
R%2=0.91 R2=0.94 R2=0.94 R2=0.88
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FIGURE 12 | Relative weight distribution of environmental variables contributing to ET during the growing season (June 1-August 31).

representing the lowest ET across study periods. The mean
seasonal ET,/ET, ratio across the five study periods was
0.38, with 2015 exhibiting the highest value (ET,/ET_ = 0.46;
Table 4).

3.5 | Growing Season Eand T

Growing season transpiration (T) varied significantly across
years (KW, p<0.001; Figure 11), with 2015 showing the largest

difference. The 4-year mean T was 1.17+0.23mmd"!, peaking
in 2015 (1.50mmd™!). Following 2015, T declined, reaching a
minimum in 2021 (1.00mmd~!; Table 5), before increasing
by 2023, though the change was not significant (Wilcoxon,
p=0.28).

Seasonal T peaked in early to mid-summer (DOY 170-200), with
the highest rate recorded in 2015 (2.77mmd " on DOY 181). An ex-
ception occurred in 2017, when elevated T persisted between DOY
200 and 220, likely due to increased g, during July and August
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during the growing season (June 1-August 31).

(Figure 9B). In contrast, a sharp drop in T around DOY 200 in 2021
coincided with reduced VPD (Figure 6C), reflecting the stronger
influence of VPD on T during that period (Figure 13B).

Evaporation (E) also varied significantly across years (KW,
p<0.001), with the highest rates in 2015. The mean E was
0.38%+0.09mmd™, declining from 0.50mmd~' during the dry
summer of 2015 to 0.30mmd ™! in the wet season of 2023 (Table 5).
Elevated E typically occurred between DOY 170 and 220; although
the timing varied across the years. The highest rate was recorded
in June 2015 (1.64 mmd~'; DOY 185). Despite the notably wet sum-
mer of 2023, E remained lower than in 2015 and 2017.

3.6 | Relative Weight Analysis

Over the growing season, relative weight analysis indicated that
climate variables explained 85%-94% of the variability in ET, de-
pending on the year (Figure 12). Specifically, VPD made the high-
est relative contribution to the explained variance in ET in 4 out of
Syears, accounting for approximately 28% of its variability. Net ra-
diation contributed more substantially to ET variability during the
cool and wet 2023, accounting for 32% of its explained variance.
Additionally, R, influenced ET during the dry conditions of 2015
and the cool, wet conditions of 2019, accounting for ~25% of ET
variability. T, and VPD x U exhibited similar relative importance,
with an average contribution of 14%-15% across the 5Syears.

Surface conductance (g) made a notable contribution to ET
variability in 2017, explaining approximately 25% of the vari-
ance; while in 2021, it ranked fourth, behind VPD, VPD X U, and
T,, with a contribution of 17%. Neither g, nor WT contributed
meaningfully to the explained variance in ET in any year.

During the summer months, fen evaporation, as derived from
the flux partitioning analysis, was most strongly associated with
the combined effect of VPD and U across all 4years, explaining

approximately 43% of the variance in E (Figure 13A). VPD alone
was the second most influential variable in all growing seasons,
with a mean relative contribution of 25%. Notably, in 2015 and
2017, g, ranked third in relative importance, accounting for ~10%
of the explained variance. In contrast, T, replaced g, in 2021 and
2023, contributing slightly more (~15%). This shift may reflect
the warmer conditions during these years. Other variables had
a minimal influence on E, with relative importance scores rang-
ing from 2% to 10%.

In contrast, growing season transpiration as derived from the flux
partitioning analysis was predominantly influenced by R, partic-
ularly in 2015, 2017, and 2023 (Figure 13B). During the warm and
dry 2015, R  accounted for over 50% of T variability. In 2021, how-
ever, VPD had the highest relative contribution to the explained
variance in T, accounting for approximately 30%; while R ranked
second. In 2017 only, g, was a major contributor, explaining 27%
of the variability in T. T, and VPD X U also played notable roles in
2015, 2021, and 2023, with increased importance during the warm
conditions of 2021. Neither g, nor WT was a significant influence
on T variability in any of the study years.

4 | Discussion

4.1 | Primary Environmental Factors Regulating
Growing Season ET

4.1.1 | Seasonal and Interannual Dynamics of ET at
Sandhill Fen

ET at Sandhill Fen has shown considerable variability both
within and among years. The April-September mean ET
(231 +45mm) aligns with values reported for a natural peatland
in northern Alberta (237 mm; Brown et al. 2010) and a boreal
fen in Manitoba, Canada (250 mm; Lafleur et al. 1997). Seasonal
ET during dry and wet periods at SFW (237 and 204mm,
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respectively) was lower than that of a peatland complex in east-
ern Finland (347mm in a dry year, 246 mm in a wet year; Wu
et al. 2010), likely due to a higher proportion of open water in
the latter.

In all years except 2015, rainfall exceeded ET. Peak ET typically
occurred in early to mid-summer (June-July), with much lower
rates in the shoulder months (April and October; Figure 10B),
driven by lower radiation, air temperatures, and VPD (Figures 6
and 8A). Notably, July total ET at SFW in 2015 and 2017 was
lower (Table S1) than in undisturbed treed fens in the AOSR
(~80-100mm), but comparable to a nearby open fen (~65mm)
reported by Volik, Petrone, et al. (2021) for the same years. Given
the shared regional climate, Sandhill Fen's resemblance to an
open fen reflects the greater open-water coverage during the
early years of monitoring and the transitional stage of Typha
establishment, which could limit transpiration and overall
water loss.

ET also varied among years, particularly in response to prevail-
ing temperature and precipitation conditions (Figure 10A). In
dry years, ET was approximately 15% higher than in wet years,
consistent with the trends observed by Wu et al. (2010). However,
our results contrast with findings from a sedge-dominated nat-
ural fen in Manitoba, where ET increased during wetter years
with higher precipitation and water availability (Eaton and
Rouse 2001). This discrepancy may reflect differences in envi-
ronmental context (e.g., coastal location) and methodological
approaches, as Eaton and Rouse (2001) used the Bowen Ratio-
Energy Balance (BREB) method, which assumes uniform flux
distribution and static gradients (Tomlinson 1996), assumptions
often violated in heterogeneous wetland environments with
complex microtopography.

There were notable differences observed between reference
and actual evapotranspiration. Modelled ET, was consistently
higher than ET, during drier periods (Figure 10A and Table 3),
highlighting considerable variation in water loss efficiency
across years (Table 4). These discrepancies could result from the
wetland-specific microclimatic conditions, such as increased
near-surface humidity, which reduces VPD and ET,, and tall
vegetation that shades open water, thereby reducing vapour
exchange (Kelvin et al. 2017), both of which were observed at
Sandhill Fen.

Flux variance partitioning results revealed that transpiration
consistently exceeded evaporation during the growing sea-
son, as indicated by high T/ET ratios (0.68-0.72; Figure S3),
which are greater than those reported for wetlands in north-
ern Wisconsin and Central Europe (0.45-0.49; Lu et al. 2023;
Shveytser et al. 2024). While site-specific conditions may partly
explain these differences, the methodological approach likely
plays a greater role. The abovementioned studies relied on EC
combined with machine learning (XGBoost) and flux-variance
similarity (FVS). XGBoost improves large-scale partitioning by
avoiding assumptions about water-carbon flux coupling and
incorporating diverse inputs (e.g., air temperature, VPD, vege-
tation indices; Lu et al. 2023). However, FVS can be less reliable
in heterogeneous environments due to the potential decoupling
of scalar fluxes and variances, making it less accurate than the

CEC method, which directly captures flux contributions from
turbulent updrafts and downdrafts (Zahn et al. 2022).

4.1.2 | Microclimate Controls on Growing Season ET

Our results indicate that growing season ET was primarily in-
fluenced by atmospheric conditions, particularly vapour pres-
sure deficit and net radiation (Figure 12 and Table S4). VPD was
more influential, especially under warmer and drier conditions,
consistent with findings by Helbig et al. (2020), who showed that
VPD played a key role in regulating ET variability across boreal
peatlands during dry periods through its impact on surface con-
ductance. At SFW, VPD remained relatively elevated throughout
the study; however, ET did not respond as strongly, likely due
to the lack of mosses and their associated negative feedbacks to
drying. Of note, under wetter conditions, ET was influenced by
both VPD (in 2019) and R, (in 2023). The high sensitivity to VPD
in 2019 reflects overall low VPD under wet conditions, while the
increased importance of R in 2023 corresponds to greater cloud
cover that limited energy input. A similar interplay between
VPD, R, and ET was reported by Volik, Kessel, et al. (2021),
who found that during warmer years, ET from natural fens in
the AOSR was strongly correlated with both variables, further
highlighting their importance in influencing ET during varying
temperature and precipitation conditions.

When assessing the influence of the water table on ET, RWA
results indicate that, despite notable temporal variability
(Figure 7), it was not an influence on ET variability at SFW. This
is further supported by the lack of significant statistical relation-
ships between the two variables in most study years (Table S4).
A likely explanation is the consistently high water table near the
tower, resulting in open water during low WT periods. These
findings align with other studies in the AOSR, which also re-
ported weak correlations between WT and ET across multiple
wetland sites under persistently saturated conditions (Scarlett
et al. 2017; Volik, Kessel, et al. 2021).

To better understand the mechanisms underlying total ET,
we examined the environmental variables influencing its two
main components—evaporation (E) and transpiration (T)—in-
dividually. Notably, each component responded to a distinct set
of atmospheric variables. E variability responded to air tem-
perature and the VPDX U interaction term (Figure 13A). T,
contributed notably in 2021 and 2023, underscoring the role
of warm conditions in promoting open-water evaporation. In
turn, the VPD X U explained the largest portion of E variability
across all years. To assess potential collinearity, RWA was con-
ducted without the VPD x U interaction term. This reduced the
coefficient of determination for the E model only, suggesting
that stomatal regulation buffers wind effects on T but not on
E (analysis not shown). The strong influence of VPD and U on
E is well documented in wetlands with extensive open-water
areas (Price 1994; Liljedahl et al. 2011), where wind enhances
E by disrupting the saturated boundary layer. This is further
supported by findings from open-water systems (e.g., lakes),
where the VPD X U explained ~75% of daily LE variability and
U was a key factor in evaporation modelling accuracy (Clark
et al. 2021; Clark and Carey 2024).
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In contrast to evaporation, transpiration at SFW was primar-
ily influenced by R, and VPD. R explained a substantial por-
tion of T variability, with particularly strong contributions
during dry and wet years (Figure 13B). These findings align
with previous studies in boreal peatlands, where T comprises
the larger share of total ET and R, explains much of its vari-
ability (Sonnentag et al. 2010; Moore et al. 2013). Although
fewer studies have focused specifically on the relationship
between VPD and T in the peatlands, evidence from shrub-
lands and forest ecosystems supports its importance (Nicholls
et al. 2023). In their study, VPD had a stronger influence
during the growing season in shrublands and the shoulder
seasons in spruce forests, when vegetation was less developed.
This seasonal modulation of VPD influence aligns with our
observations at SFW, where both R and VPD emerged as key
drivers of T, with their limiting effects pronounced under wet
and cloudy conditions.

4.2 | Inter-Annual ET Variability in Response
to Shifts in Dominant Plant Communities
and Regional Climate Conditions

While climate variables largely influence ET at SFW, changes
in surface properties and vegetation also play a crucial role. Our
data show a decline in growing season (June-August) total ET
between 2015 and 2023. This reduction may be attributed to the
expansion of Typha latifolia near the EC tower (Table 3). The
presence of Typha in wetlands has been shown to suppress ET
by sheltering open water and reducing wind-driven evaporation
(Nichols and Brown 1980). Although total ET responded weakly
to aerodynamic conductance (Figure 12 and Table S4), g, influ-
enced E variability (Figure 13A), particularly in 2015 and 2017,
when sparse vegetation and open water likely enhanced g, and
promoted E. In contrast, by 2021 and 2023, g, contribution to E
variability declined, suggesting that reduced open-water areas
and increased Typha shading shifted control towards atmo-
spheric forcing.

In addition to changes in surface conditions, vegetation char-
acteristics can significantly regulate ET in the peatlands. This
study assessed surface conductance to evaluate the impact of
vegetation shifts on ET. The influence of g, on ET was stronger
in warm and dry years (Figures 12 and 13B), when reductions in
8, likely due to water retention by Typha, led to suppressed ET
and T fluxes (Figure 10B). Similar declines in ET associated with
increased stomatal resistance were observed in other peatland
ecosystems, including a constructed fen in the AOSR (Scarlett
et al. 2017), a natural wetland with diverse vegetation in north-
central Alberta (Brown et al. 2010), and Typha-dominated peat-
lands (Goulden et al. 2007). These findings are consistent with
the patterns observed in our study but may not reflect typical ET
responses across all wetland types.

While g, explained a large portion of ET variability during drier
periods, its overall influence was limited in most other years,
likely due to consistently high water tables (Figure 7). These per-
sistently wet conditions favour Typha latifolia, which is likely
to continue expanding under the current management. Highly
adaptable, Typha tolerates fluctuating water levels, prolonged
flooding, and drawdowns (Bansal et al. 2019)—conditions

typical of Sandhill Fen. Though often used in wetland resto-
ration for its nutrient-regulating capacity, Typha dominance can
suppress plant diversity by increasing litter accumulation, nitro-
gen levels, and shading (Mollard et al. 2013; Graham et al. 2022).
While further expansion of Typha may help limit water loss at
SFW, it could also outcompete native fen species, such as grasses
and sedges, thereby altering ecosystem structure. As a result,
Sandhill Fen may continue evolving into a marsh-like wetland,
potentially diverging from reclamation goals aimed at restoring
a peat-accumulating, drought-resilient fen ecosystem.

4.3 | Hydrological Function of the Sandhill Fen

To assess the hydrological function of Sandhill Fen, we evalu-
ated surface-atmosphere interactions and energy partitioning,
alongside ET, in the context of other peatlands. In our study,
May-September ET during the first year (2015) was lower
than the 350mm reported for SFW in its initial 2years post-
commissioning (2013-2014; Nicholls et al. 2016) and the 330-
420 mm observed at Nikanotee Fen, another constructed wetland
in the region (Scarlett et al. 2017; Popovi¢ et al. 2022, 2025). The
higher ET rates reported in those studies were attributed to wet,
dark peat surfaces and extensive open water areas. In later years
(e.g., 2017 and 2019), ET at Nikanotee Fen declined as vegetation
cover developed (Popovi¢ et al. 2022) but remained higher than
the ET observed at SFW during the same period, possibly due to
the greater abundance of Typha at Sandhill Fen.

Surface-atmosphere interactions at SFW differed from both con-
structed and natural peatlands. The decoupling coefficient was
generally lower during drier years, coinciding with reduced g
and indicating stronger surface control on ET (Table 3). A sim-
ilar pattern was observed at Nikanotee Fen, where vegetation
establishment also weakened atmospheric coupling, although
seasonal Q values were slightly higher (0.32-0.49; Popovié¢
et al. 2023), likely due to differences in plant community com-
position and surface wetness. At SFW, seasonal Q fell within
the range reported for undisturbed boreal peatlands (0.20-0.50;
Kurbatova et al. 2002; Alekseychik et al. 2018), aligning more
closely with natural fens than bogs, reflecting contrasts in dom-
inant vegetation and their response to moisture stress.

Notable interannual shifts in energy partitioning were observed
at SFW, with latent heat flux contributing more prominently in
most years. Our estimates were slightly lower (Table S2) than
those reported for Nikanotee Fen 5-7years post-reclamation
(Popovi¢ et al. 2023) and aligned more closely with values from
undisturbed, moderately open, sedge-dominant fens in the
AOSR (LE/R,: 0.40-0.60; Volik, Petrone, et al. 2021). Reduced
LE contributions in 2017 and 2021 were likely linked to drier
conditions. A decline in LE/Rn ratio under such conditions, re-
flecting increased energy allocation to sensible heat flux, has
been reported in natural peatlands in north-central Alberta
(Petrone et al. 2007; Morison et al. 2020). At SFW, elevated sea-
sonal H/R  ratios were particularly notable in 2019 and 2021
(Table S3). In 2021, this increase likely resulted from warmer,
moderately dry conditions and suppressed LE flux, whereas in
2019, the elevated H/R  ratio likely reflected a combination of
reduced LE, decreased radiation due to cloud cover, and lower
aerodynamic conductance (Tables 2 and 3).
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Considering the importance of wetland reestablishment in the
AOSR and the observed variability in ET, vegetation composi-
tion, surface-atmosphere interactions, and energy partitioning,
several management strategies may help sustain hydrological
function at SFW and improve reclamation outcomes. Post-
construction managementshould prioritise promoting vegetation
communities that enhance transpiration and ecosystem-atmo-
sphere coupling. In particular, limiting the dominance of Typha
latifolia by encouraging Carex aquatilis establishment in wetter
areas could reduce the risk of Typha encroachment, as targeted
planting of Carex has been shown to perform well under wet-
ter conditions (Vitt et al. 2011; Borkenhagen et al. 2024). Active
Typha management, such as manual biomass removal in areas
of extensive invasion, may further mitigate its spread (Graham
et al. 2022). Maintaining stable, shallow water tables is also crit-
ical to support fen-native vegetation and hydrological function
(Ketcheson et al. 2016). Long-term reclamation planning should
account for interannual climate variability and include hydro-
meteorological monitoring across wet, average, and dry years
to assess ecosystem resilience. Implementing adaptive manage-
ment strategies, such as periodic reassessment of site conditions
and timely interventions, can improve long-term fen function
and resilience (WardekKer et al. 2016).

5 | Conclusions

This study examines multi-year ET and energy dynamics in a
reclaimed boreal wetland, offering insights into hydrological
changes following disturbance. Our findings indicate that grow-
ing season ET was up to 15% higher during warmer and drier
years, with the lowest rates observed in the coolest and wettest
year. Mean seasonal ET over the study period was 249 +£49.9 mm,
consistent with estimates from natural and constructed boreal
peatlands. Intra-annual ET variability was primarily influenced
by vapour pressure deficit and net radiation, while its long-term
decline corresponded with an increase in Typha latifolia cover
near the tower, from 19% to 63%. Partitioning results showed
that transpiration accounted for approximately 70% of total ET,
suggesting that the emergent structure of Typha reduced water
loss by sheltering the surface and limiting both radiative input
and turbulent exchange. Although ET declined over the study
period, the energy balance at SFW remained largely dominated
by latent heat flux, indicating that Sandhill Fen is progressing
toward functional similarity with natural wetlands in terms
of hydrological behaviour. Rainfall exceeded ET in 80% of the
years, reflecting generally sufficient moisture availability and
the absence of prolonged drought.

In light of the ongoing expansion of reclamation projects in
the AOSR, accurately quantifying vertical water loss through
ET is critical for informing the design and long-term sustain-
ability of constructed wetlands. This study provides a detailed
assessment of water and energy fluxes in a constructed fen,
offering insights into surface-atmosphere interactions and the
magnitude of water loss from the system. By partitioning ET,
the analysis reveals key environmental drivers of water loss and
highlights how shifts in vegetation structure, particularly the
establishment of non-native peatland species, can influence fen
microclimate. Although broader hydrological connectivity is not
addressed, the findings emphasise the importance of ongoing

flux and vegetation monitoring to refine reclamation strategies
and improve future wetland planning.
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