Application of Artificial Substrate Samplers to Assess Enrichment of Metals of Concern by River Floodwaters to Lakes Across the Peace-Athabasca Delta

Resource Type
Cory Savage
Tanner Owca
Mitchell Kay
Jelle Faber
Brent Wolfe
Roland Hall
Resource Date:
Page Length

Potential for downstream delivery of contaminants via Athabasca River floodwaters
to lakes of the PAD has raised local to international concern. Here, we quantify enrichment of eight metals (Be, Cd, Cr, Cu, Ni, Pb, V, Zn) in aquatic biota, relative to sediment-based pre-industrial baselines, via analysis of biofilm-sediment mixtures accrued on artificial substrate samplers deployed during summers of 2017 and 2018 in > 40 lakes. Widespread flooding in the southern portion of the delta in spring 2018 allows for assessment of metal enrichment by Athabasca River floodwaters.
New hydrological insights: River floodwaters are not implicated as a pathway of metal enrichment to biofilm-sediment mixtures in PAD lakes from upstream sources. MANOVA tests revealed no significant difference in residual concentrations of all eight metals in lakes that did not flood versus lakes that flooded during one or both study years. Also, no enrichment was detected for concentrations of biologically inert metals (Be, Cr, Pb) and those related to oil-sands development (Ni, V). Enrichment of Cd, Cu, and Zn at non-flooded lakes, however, suggests uptake of biologically
active metals complicates comparisons of organic-rich biofilm-sediment mixtures to
sediment-derived baselines for these metals. Results demonstrate that this novel approach could be adopted for lake monitoring within the federal Action Plan.