Abstract: Planting trees is an important step in re-establishing functioning forest ecosystems after industrial land disturbances. Conventional planting practices create forests with evenly spaced trees, at low density, which maximizes individual tree growing space but delays the time until crown closure, potentially for decades. In this study, the first operational cluster planting trial for reclaimed boreal forest, we examined first year tree growth and vegetation competition results of a cluster planting trial in which trembling aspen (Populus tremuloides) trees were planted in clusters of 4, 10, or 20 trees with an internal spacing of 0.25 m along with non-clustered controls. Clustering of aspen seedlings had a measurable impact on the relative proportions of tree and competing vegetation cover with increased tree cover and decreased forb cover in the 10 and 20 seedling clusters compared to the controls. Average seedling height and first year height growth were similar across all cluster treatments but tended to be higher in the clusters, likely due to the suppression of competing vegetation. Operationally, there are still many questions to be answered before this practice can be implemented in a large scale across the landscape. However, based on our initial results, we believe that cluster planting has the potential to become a valuable tool for reclamation practitioners.
Related Resources
Webinar - Boreal Fen Vegetation Initiation on Residual Mineral Substrates
Resource Date:
November
2020
The Biophysical Climate Mitigation Potential of Boreal Peatlands During the Growing Season
Resource Date:
October
2020
Organization
Webinar - Peatlands in Canada: Linking Science, Policy, and Practice to Protect an Essential Carbon Service
Resource Date:
September
2020
Tree Regeneration on Industrial Linear Disturbances in Treed Peatlands is Hastened by Wildfire and Delayed by Loss of Microtopography
Resource Date:
July
2020
Organization
Wetland Knowledge Exchange September 2020 Newsletter
Resource Date:
September
2020