Groundwater level (GWL) and depth to water (DTW) are related metrics aimed at characterizing groundwater-table positions in peatlands, and two of the most common variables collected by researchers working in these ecosystems. While well-established field techniques exist for measuring GWL and DTW, they are generally difficult to scale. In this study, we present a novel workflow for mapping groundwater using orthophotography and photogrammetric point clouds acquired from unmanned aerial vehicles. Our approach takes advantage of the fact that pockets of surface water are normally abundant in peatlands, which we assume to be reflective of GWL in these porous, gently sloping environments. By first classifying surface water and then extracting a sample of water elevations, we can generate continuous models of GWL through interpolation. Estimates of DTW can then be obtained through additional efforts to characterize terrain. We demonstrate our methodology across a complex, 61-ha treed bog in northern Alberta, Canada. An independent accuracy assessment using 31 temporally coincident water-well measurements revealed accuracies (root mean square error) in the 20-cm range, though errors were concentrated in small upland pockets in the study area, and areas of dense tree covers. Model estimates in the open peatland areas were considerably better.
Related Resources
Linear Disturbances Shift Boreal Peatland Plant Communities Toward Earlier Peak Greenness
Resource Date:
April
2021
Organization
Temperature, Moisture and Freeze–thaw Controls on CO2 Production in Soil Incubations From Northern Peatlands
Resource Date:
December
2021
Ecohydrological Interactions in a Boreal Fen–swamp Complex, Alberta, Canada
Resource Date:
November
2021
Organization
The Essential Carbon Service Provided by Northern Peatlands
Resource Date:
November
2021
The Boreal-Arctic Wetland and Lake Dataset
Resource Date:
2021
Organization
Impacts of Seismic Line Restoration on CO2, CH4, and Biomass
Resource Date:
2021
Organization
Was this helpful?
|