Abstract: Ground-dwelling macrolichens dominate the forest floor of mature upland pine stands in the boreal forest. Understanding patterns of lichen abundance, as well as environmental characteristics associated with lichen growth, is key to managing lichens as a forage resource for threatened woodland caribou (Rangifer tarandus caribou). The spectral signature of light-coloured lichen distinguishes it from green vegetation, potentially allowing for mapping of lichen abundance using multi-spectral imagery, while canopy structure measured from airborne laser scanning (ALS) of forest openings can indirectly map lichen habitat. Here, we test the use of high-resolution KOMPSAT (Korea Multi-Purpose Satellite-3) imagery (280 cm resolution) and forest structural characteristics derived from ALS to predict lichen biomass in an upland jack pine forest in Northeastern Alberta, Canada. We quantified in the field lichen abundance (cover and biomass) in mature jack pine stands across low, moderate, and high canopy cover. We then used generalized linear models to relate lichen abundance to spectral data from KOMPSAT and structural metrics from ALS. Model selection suggested that lichen abundance was best predicted by canopy cover (ALS points > 1.37 m) and to a lesser extent blue spectral data from KOMPSAT. Lichen biomass was low at plots with high canopy cover (98.96 g/m2 ), while almost doubling for plots with low canopy cover (186.30 g/m2 ). Overall the model fit predicting lichen biomass was good (R2 c = 0.35), with maps predicting lichen biomass from spectral and structural data illustrating strong spatial variations. High-resolution mapping of ground lichen can provide information on lichen abundance that can be of value for management of forage resources for woodland caribou. We suggest that this approach could be used to map lichen biomass for other regions.
Related Resources
A Synthesis of Three Decades of Eco-Hydrological Research at Scotty Creek, NWT, Canada
Resource Date:
August
2018
Effects of Narrow Linear Disturbances on Light and Wind Patterns in Fragmented Boreal Forests in Northeastern Alberta
Resource Date:
August
2018
Organization
Spatial Variability and Controls on Surface Water Chemistry and Quality in a Landscape: The Western Boreal Forest
Resource Date:
2018
Organization
Wildfire as a Major Driver of Recent Permafrost Thaw in Boreal Peatlands
Resource Date:
August
2018
Was this helpful?
|