Assessing the Influence of Climate on the Growth Rate of Boreal Tree Species in Northeastern Canada Through Long Term Permanent Sample Plot Datasets

Authors
Tyler Searls
X. Zhu
D.W. McKenney
R. Mazumder
J. Steenberg
G. Yan
F.-R. Meng
Resource Date:
2020
Page Length
10

Climate has a considerable influence on tree growth. Forest managers benefit from the empirical study of the historic relationship between climatic variables and tree growth to support forest management frameworks that are to be applied under scenarios of climate change. Through this research, we have utilized long-term permanent sample plot records, historic climate data sets, and linear mixed modelling techniques to evaluate the historic influence of climatic variables on the growth rates of major boreal tree species in Newfoundland and Labrador, Canada. For the commercially significant spruce and fir forests of the province, we found growing degree-days (GDD) to negatively correlate with tree productivity in warmer regions, such as much of Newfoundland (±1350 GDD), but positively correlate with growth in cooler regions, such as those in Labrador (±750 GDD). With respect to precipitation, environmental moisture was not on average a limiting factor to species productivity in the province. These dynamics have implications for the productivity of the spruce–fir forests of the study area when considered alongside contemporary climate projections for the region, which generally entail both a warmer and wetter growing environment.