Aerial seeding with drones has great potential in forest restoration but faces enormous challenges to be efficient and scalable. Current protocols use blanket seeding throughout the area to be restored, meaning a high demand for seed since many seeds arrive in sites unsuitable for establishment. High precision seeding directed to safe microsites at submeter scale could reduce seed use per hectare, reducing economic and ecological costs, while increasing establishment success. Here, we propose an alternative, precision approach to make drone seeding more successful and efficient. This requires (1) submeter-scale selection of target microsites for seeding founded in ecological knowledge; (2) high-resolution remote sensing imagery to train artificial intelligence (AI) systems in target microsite recognition; and (3) process automation by transferring target microsite coordinates from the AI system to the drone. This will reduce seed inputs per unit area, seedling establishment failure risks, and drone operation costs.
Related Resources
Evaluating the Hydrological Response of a Boreal Fen Following the Removal of a Temporary Access Road
Resource Date:
January
2021
Organization
The Role of Hummocks in Re-establishing Black Spruce Forest Following Permafrost Thaw
Resource Date:
December
2020
The Biophysical Climate Mitigation Potential of Boreal Peatlands During the Growing Season
Resource Date:
October
2020
Organization
Roads Impact Tree and Shrub Productivity in Adjacent Boreal Peatlands
Resource Date:
May
2020
Organization
Wetlands in the Athabasca Oil Sands Region: The Nexus between Wetland Hydrological Function and Resource Extraction
Resource Date:
February
2020
Organization
Methane Cycling in Horticultural Extracted, Restored, and Unrestored Peatlands in Central Alberta
Resource Date:
2020
Organization
Was this helpful?
|