Determinants of Migration Trajectory and Movement Rate in a Long-distance Terrestrial Mammal

Authors
Martin LeClerc
Mathieu Leblond
Christian Dussault
Mael Le Corre
Steeve Côté
Resource Date:
2021

This resource is available on an external database and may require a paid subscription to access it. It is included on the CCLM to support our goal of capturing and sharing the breadth of all available knowledge pertaining to Boreal Caribou, Wetlands, and Land Management.

Animal migrations occur in many taxa and are considered an adaptive response to spatial or temporal variations in resources. Human activities can influence the cost-benefit trade-offs of animal migrations, but evaluating the determinants of migration trajectory and movement rate in declining populations facing relatively low levels of human disturbance can provide new and valuable insights on the behavior of wildlife in natural environments. Here, we used an adapted version of path selection functions and quantified the effects of habitat type, topography, and weather, on 313 spring migrations by migratory caribou (Rangifer tarandus) in northern Québec, Canada, from 2011 to 2018. Our results showed that during spring migration, caribou selected tundra and avoided water bodies, forest, and higher elevation. Higher precipitation and deeper snow were linked to lower movement rates. Weather variables had a stronger effect on the migration trajectories and movement rates of females than males. Duration of caribou spring migration (mean of 48 days) and length (mean of 587 km) were similar in males and females, but females started (22 April) and ended (10 June) spring migrations ca. 6 days earlier than males. Caribou spring migration was influenced by habitat type, topography, and weather, but we also observed that caribou migrations were not spatially constrained. Better knowledge on where and when animals move between their winter and summer ranges can help inform management and land planning decisions. Our results could be used to model future migration trajectories and speed of caribou under different climate change scenarios.