Process affected water and other industrial wastewaters are a major environmental concern. During oil sands mining, large amounts of oil sands process affected water (OSPW) are generated and stored in ponds until reclaimed and ready for surface water discharge. While much research has focused on organics in process waters, trace metals at high concentrations may also pose environmental risks. Phytoremediation is a cost effective and sustainable approach that employs plants to extract and reduce contaminants in water. The research was undertaken in mesocosm scale constructed wetlands with plants exposed to OSPW for 60 days. The objective was to screen seven native emergent wetland species for their ability to tolerate high metal concentrations (arsenic, cadmium, copper, chromium, copper, nickel, selenium, zinc), and then to evaluate the best performing species for OSPW phytoremediation. All native plant species, except Glyceria grandis, tolerated and grew in OSPW. Carex aquatilis (water sedge), Juncus balticus (baltic rush), and Typha latifolia (cattail) had highest survival and growth, and had high metal removal efficiencies for arsenic (81–87 %), chromium (78–86 %), and cadmium (74–84 %), relative to other metals; and greater than 91 % of the dissolved portions were removed. The native plant species were efficient accumulators of all metals, as demonstrated by high root and shoot bioaccumulation factors; root accumulation was greater than shoot accumulation. Translocation factor values were greater than one for Juncus balticus (chromium, zinc) and Carex aquatilis (cadmium, chromium, cobalt, nickel). The results demonstrate the potential suitability of these species for phytoremediation of a number of metals of concern and could provide an effective and environmentally sound remediation approach for wastewaters.
Related Resources
Low-impact Line Construction Retains and Speeds Recovery of Trees on Seismic Lines in Forested Peatlands
Resource Date:
2023
Organization
Potential of Macrophytes for Wastewater Remediation with Constructed Floating Wetlands in Cold Climates
Resource Date:
July
2023
Organization
Hitchhiker Planting: Mixed-species Container Stock Planting as a Novel Tool to Increase Plant Diversity on Industrially Disturbed Sites
Resource Date:
September
2023
Was this helpful?
|