The land disturbed by open-pit oil sands mining must be restored to support the survival and growth of native boreal plants. Because tailings sand and sodic shale overburden are commonly used as an underlying parent substrate that is capped by boreal forest cover soils, the soil pH in reclamation sites is often higher compared with undisturbed boreal forest soil. Sulfur is a major byproduct of oil sands refining and could potentially be used as an amendment to lower the soil pH on reclamation sites. In this study, we examined the effects of soil pH and elemental sulfur on growth and physiological responses in Saskatoon berry and beaked hazelnut seedlings. We found that elemental sulfur was effective in lowering soil pH. However, addition of elemental sulfur to a forest soil of pH 5.7 lowered the soil pH to around 3, which impaired the growth and physiological performance of both plant species. The addition of 5 and 25 g kg−1 elemental sulfur to the pH 8.5 soil did not substantially improve the examined growth and physiological parameters in Saskatoon berry and beaked hazelnut seedlings. Further, excess addition of elemental sulfur in high pH soil could reduce the uptake of nitrogen, phosphorus, and calcium in Saskatoon berry. The results demonstrate that the amount of sulfur applied to the soil would need to be carefully determined for different soil types and pH levels to avoid potential toxicity effects.
Related Resources
“We’re Made Criminals Just to Eat off the Land”: Colonial Wildlife Management and Repercussions on Inuit Well-Being
Resource Date:
October
2021
Demographic Responses of a Threatened, Low-density Ungulate to Annual Variation in Meteorological and Phenological Conditions
Resource Date:
October
2021
Digging Into Canadian Soils - An Introduction to Soil Science
Resource Date:
2021
Organization
Effects of Fire Severity and Woody Debris on Tree Regeneration for Exploratory Well Pads in Jack Pine (Pinus banksiana) Forests
Resource Date:
September
2021
Organization
Dynamic Patterns in Winter Ungulate Browse Succession in the Boreal Plains of Alberta
Resource Date:
July
2021
Organization
Was this helpful?
|