Species-Specific Responses to Wetland Mitigation among Amphibians in the Greater Yellowstone Ecosystem

Authors
Leah Swartz
Winsor Lowe
Erin Muths
Blake Hossack
Contacts
Resource Date:
August
2019
Page Length
9

This resource is available on an external database and may require a paid subscription to access it. It is included on the CCLM to support our goal of capturing and sharing the breadth of all available knowledge pertaining to Boreal Caribou, Wetlands, and Land Management.

Habitat loss and degradation are leading causes of biodiversity declines, therefore assessing the capacity of created mitigation wetlands to replace habitat for wildlife has become a management priority. We used single season occupancy models to compare the occurrence of larvae of four species of pond‐breeding amphibians in wetlands created for mitigation, wetlands impacted by road construction, and unimpacted reference wetlands along a highway corridor in the Greater Yellowstone Ecosystem, United States. Created wetlands were shallow and had less aquatic vegetation and surface area than impacted and reference wetlands. Occupancy of barred tiger salamander (Ambystoma mavortium) and boreal chorus frog (Pseudacris maculata) larvae was similar across wetland types, whereas boreal toads (Anaxyrus boreas) occurred more often in created wetlands than reference and impacted wetlands. However, the majority of created wetlands (>80%) dried partially or completely before amphibian metamorphosis occurred in both years of our study, resulting in heavy mortality of larvae and, we suspect, little to no recruitment. Columbia spotted frogs (Rana luteiventris), which require emergent vegetation that is not common in newly created wetlands, occurred commonly in impacted and reference wetlands but were found in only one created wetland. Our results show that shallow created wetlands with little aquatic vegetation may be attractive breeding areas for some amphibians, but may result in high mortality and little recruitment if they fail to hold water for the entire larval period.