In this study, we examined seasonal coyote and black bear use of industrial linear features and rivers and streams (i.e. natural linear features). We used two methods to assess movement behavior relative to linear developments. First, we used step selection functions (SSF; Fortin et al. 2005) to assess fine-scale movement in relation to industrial linear developments, i.e. pipeline right-of-ways, all-season roads, and conventional seismic lines. We predicted that if industrial linear features are important conduits to animal movement, coyotes and black bears would be more likely to move closer to these features than expected at random. Second, we used coyote and black bear Global Positioning System (GPS) locations to create observed animal movement paths and assessed whether these followed industrial linear features more closely than a null model of simulated animal paths. We predicted that if these features were being used as movement corridors, observed paths would show less deviation from industrial linear features than simulated paths.
Related Resources
A Financial Analysis of Using Improved Planting Stock of White Spruce and Lodgepole Pine in Alberta, Canada: Genomic Selection Versus Traditional Breeding
Resource Date:
July
2019
Evaluation of Reclamation Practices on Upland and Peatland Wellsites
Resource Date:
2019
Plant Functional Traits as Indicator of the Ecological Condition of Wetlands in the Grassland and Parkland of Alberta, Canada
Resource Date:
2019
A Regional-Scale Index for Assessing the Exposure of Drinking-Water Sources to Wildfires
Resource Date:
April
2019
Utilizing a Topographic Moisture Index to Characterize Understory Vegetation Patterns in the Boreal Forest
Resource Date:
September
2019
Organization