Wildfires Offset the Increasing but Spatially Heterogeneous Arctic–boreal CO2 Uptake
Authors
Anna-Maria Virkkala
Brendan Rogers
Jennifer Watts
Kyle Arndt
Stefano Potter
Isabel Wargowsky
Edward Schuur
Craig See
Marguerite Mauritz
Julia Boike
Marion Bret-Harte
Eleanor Burke
Arden Burrell
Namyi Chae
Abhishek Chatterjee
Frederic Chevallier
Torben Christensen
Roisin Commane
Han Dolman
Colin Edgar
Bo Elberling
Craig Emmerton
Eugenie Euskirchen
Liang Feng
Mathias Göckede
Achim Grelle
Manuel Helbig
David Holl
Järvi Järveoja
Sergey Karsanaev
Hideki Kobayashi
Lars Kutzbach
Junjie Liu
Ingrid Luijkx
Efrén López-Blanco
Kyle Lunneberg
Ivan Mammarella
Maija Marushchak
Mikhail Mastepanov
Yojiro Matsuura
Trofim Maximov
Lutz Merbold
Gesa Meyer
Mats Nilsson
Yosuke Niwa
Walter Oechel
Paul Palmer
Sang-Jong Park
Frans-Jan Parmentier
Matthias Peichl
Wouter Peters
Roman Petrov
William Quinton
Christian Rödenbeck
Christian Rödenbeck
Torsten Sachs
Christopher Schulze
Oliver Sonnentag
Vincent Louis
Eeva-Stiina Tuittila
Masahito Ueyama
Andrej Varlagin
Donatella Zona
Susan Natali
The Arctic–Boreal Zone is rapidly warming, impacting its large soil carbon stocks. Here we use a new compilation of terrestrial ecosystem CO2 fluxes, geospatial datasets and random forest models to show that although the Arctic–Boreal Zone was overall an increasing terrestrial CO2 sink from 2001 to 2020 (mean ± standard deviation in net ecosystem exchange, −548 ± 140 Tg C yr−1; trend, −14 Tg C yr−1; P < 0.001), more than 30% of the region was a net CO2 source. Tundra regions may have already started to function on average as CO2 sources, demonstrating a shift in carbon dynamics. When fire emissions are factored in, the increasing Arctic–Boreal Zone sink is no longer statistically significant (budget, −319 ± 140 Tg C yr−1; trend, −9 Tg C yr−1), and the permafrost region becomes CO2 neutral (budget, −24 ± 123 Tg C yr−1; trend, −3 Tg C yr−1), underscoring the importance of fire in this region.